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A new approach to the problem of the kinetic exchange for orbitally degenerate ions is developed. The
constituent multielectron metal ions are assumed to be octahedrally coordinated, and strong crystal field scheme
is employed, making it possible to take full advantage from the symmetry properties of the fermionic operators
and collective electronic states. In the framework of the microscopic approach, the highly anisotropic effective
Hamiltonian of the kinetic exchange is constructed in terms of spin operators and standard orbital operators
(matrices of the unit cubic irreducible tensors). As distinguished from previous considerations, the effective
Hamiltonian is derived for a most general case of the multielectron transition metal ions possessing orbitally
degenerate ground states and for arbitrary topology of the system. The overall symmetry of the system is
introduced through the restricted set of the one-electron transfer integrals implied by the symmetry conditions.
All parameters of the effective Hamiltonian are expressed in terms of the relevant transfer integrals and
fundamental parameters of the two moieties, namely crystal field and Racah parameters for the metal ions in
their normal, reduced, and oxidized states. The developed approach is applied to two kinds of systems:
edge-shared (D2h) and corner-shared (D4h) bioctahedral clusters. In the particular case of d1 ions (2T2-2T2
problem) the energy pattern in both cases consists of several multiplets splitted by the isotropic part of exchange.
In both cases we have found a weak ferromagnetic splitting for several multiplets of the system. This splitting
is due to the competition of ferro- and antiferromagnetic contributions arising from the high- and low-spin
reduced states in line with Anderson’s considerations, Goodenough-Kanamori rules, and McConnell
mechanism of ferromagnetic interaction. On the contrary, these weak ferromagnetic interaction are found to
coexist with strong ferro- and antiferromagnetic contributions in which only high-spin and low-spin excited
states are respectively involved. In addition to these unexpected results in both topologies the ferro- and
antiferromagnenic contributions vanish separately for one of the level, the last being thus paramagnetic. These
results are in a strike contradiction with the generally accepted point of view on the ferromagnetic role of
orbital degeneracy in the magnetic exchange. They also show that the simple qualitative models have a
restricted area of applications and that the peculiarities of the exchange problem in the case of orbital degeneracy
are much more complicated. The energy pattern of the exchange levels is closely related to the topology of
the system and to the network of the one-electron transfer intercenter connections forming effective parameters
of the kinetic exchange in the case of orbital degeneracy.

I. Introduction

Heisenberg,1 Dirac,2 and Van Vleck (HDVV)3 showed that
the exchange can be described by the effective Hamiltonian

expressed in terms of the ionic full spin operatorsSi and
multielectron exchange parameterJ. The last involves both
potential and kinetic exchange contributions in Anderson’s
terminology.4 This Hamiltonian is valid for magnetic systems
consisting of orbitally nondegenerate ions. A vast variety of
polynuclear compounds (exchange clusters), low dimensional
systems and extended magnetic materials have been studied in
the framework of the HDVV model.5-11 In this case the
isotropic term dominates and the anisotropic contributions (like

dipolar and quadrupolar anisotropy, antisymmetric exchange)
and also higher order isotropic terms (biquadratic exchange)
are relatively small.10,11 The situation is quite different when
the orbital moments of the constituent ions are not strongly
quenched by the low-symmetry crystal fields so that the orbital
degeneracy remains in a high-symmetric ligand surrounding.
This situation is expected to occur in many extended lattices
and magnetic molecular systems. As examples we can mention
the Ru4+ ions in BaRuO312 and (V2O10)14-.13 The problem of
orbital degeneracy appears also in the compounds where two
Ti3+ ions are linked by three bridging ligands. One can mention
(Et2NH2)3Ti2Cl9,14,15 Cs3Ti2Cl9,16,17 and Cs3Ti2Br918 systems
whose magnetic properties have not been interpreted consistently
till now. Finally, the dimeric oxo-bridged system [L5M-O-
ML5]n+ (M is the d2 metal ion), considered recently in ref 19,
can be exemplified.

In the case of orbital degeneracy the isotropic spin Hamil-
tonian (being complemented also by small anisotropic contribu-
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tions) proves to be invalid even as a zeroth order approximation.
The orbital degeneracy creates highly anisotropic interactions
and the effective exchange Hamiltonian cannot be expressed
in terms of spin operators only and contains orbital operators
as well.
Two main trends in derivation of these kinds of Hamiltonians

may be noticed, namely, semiempiric and microscopic. In the
semiempirical theory the general form of the Hamiltonian may
be found applying only point symmetry and time reversal
arguments in constructing a general invariant operator involving
also interaction of the system with the external (magnetic and
electric) fields.20-22 This semiempirical approach deals with
large numbers of independent (from the symmetry point of view)
parameters so that the application of the theory to a real material
cannot be always meaningful.
The microscopic theory of the exchange interaction between

orbitally degenerate ions has been developed by several
authors.22-32 The idea that different orbital states have different
exchange parameters was proposed by Van Vleck,23 and the
theory of the potential exchange was worked out by Levy.25

Effective potential exchange Hamiltonian for orbitally degenerate
ions in a strong cubic crystal field scheme is given in refs 31
and 32.
In most cases the kinetic exchange arising from the partial

electron delocalization into the excited charge transfer (CT)
states is the dominant contribution to the overall exchange
parameter. According to the Anderson’s concept4 and Good-
enough-Kanamori rules,33 three different cases should be dis-
tinguished: (1) intercenter electron transfer between the half-
occupied orbitals giving rise to the antiferromagnetic exchange,
(2) transfer from the half-occupied orbital to the empty orbital,
and (3) transfer from the double occupied orbitals to the half-
filled orbital. In the last two cases, delocalization results in a
relatively weak ferromagnetic interaction arising from the
competition of ferro- and antiferromagnetic contributions to the
overall exchange. The order of the resulting kinetic exchange
parameter can be estimated as

wheret is the intercenter transfer integral,U is the intracenter
Coulomb repulsion energy, andJ0 is the intracenter exchange
of the mobile electron with the spin core; consequently,U -
J0 andU + J0 are the energies of the high-spin and low-spin
CT terms. Similar ideas were proposed by McConnell34 and
later by Breslow et al.35,36 (for review and discussion see refs
9 and 37).
The above conclusions were drawn out in the framework of

one-electron (orbital) model. For orbitally degenerate systems
the three mentioned cases should be adapted to account for the
multielectronic terms of the interacting ions. In fact, only if
all orbitals are half-filled (case 1) we deal with orbital singlets
and then the HDVV Hamiltonian is applicable. In the other
two cases we have empty (or double-occupied) orbitals pos-
sessing the same energy as that of other half-filled orbitals.
Under this condition the HDVV spin Hamiltonian requires
essential modifications.
The complete Hamiltonian for the kinetic exchange between

two orbitally degenerate ions was proposed by Drillon and
Georges.29,30 These authors assumed a weak crystal field
scheme expressing the generalized Hamiltonian in terms of
orbital angular momentum and spin operators. However, this
computational procedure proved to be cumbersome so that only

relatively simple electronic configurations and topologies can
be really considered. In the framework of the used model all
reduced (oxidized) ionic spin levels possessing the same site
spin were assumed to have equal energies. Therefore, this
simplified model did not take into account the complex energy
spectrum of transition metal ions described by the Tanabe and
Sugano diagrams.38 A formally similar model with a different
mathematical procedure has been developed in ref 39.
The present paper is an attempt to develop a new efficient

approach to the problem of kinetic exchange between orbitally
degenerate multielectron ions. We will use the important idea
of ref 29 of factorization of the full secondary quantized
Hamiltonian. However, as distinguished from ref 29, we start
with the strong crystal field scheme (with the subsequent
allowance of mixing of all configurations). This makes possible
the use of symmetry properties of the fermionic operators ref
40 and collective electronic states to the full extent. We will
show that taking full advantage of the symmetry one can
construct the effective Hamiltonian involving spin operators and
standard orbital operators (matrices of the unit cubic irreducible
tensors). At the same time, the developed approach allows us
to take into account carefully all important CT states using the
fundamental parameters of the constituent moieties, namely, the
set of relevant crystal field and Racah parameters. In this sense
the developed approach is expected to provide the possibility
to rationalize the properties of real systems in terms of relevant
crystal field parameters determined independently for the
constituent magnetic sites (for example, from spectroscopic
data). The second important advantage of the developed
approach is that the effective Hamiltonian retains its general
form for a definite ground term of each individual site,
independently of both the overall symmetry of the cluster and
the internal structure of the ground states. The overall symmetry
requirements are introduced through the set of relevant electron
transfer pathways; meanwhile, the internal structure of the
multielectron states of dn ions and CT states determines the
effective parameters of the general Hamiltonian. From this point
of view it can be said that the suggested effective Hamiltonian
provides the same level of generality in the problem of exchange
interactions between orbitally degenerate ions as the conven-
tional HDVV Hamiltonian for the nondegenerate spin systems.
The results obtained for two symmetriesD2h (edge-shared

octahedra) andD4h (corner-shared octahedra) shows that the
energy pattern is much more complicated than that obtained in
the previous simple models. Finally, in view of the results
obtained in the framework of developed multielectron approach,
we discuss the applicability of the qualitative results of
Anderson’s model and Goodenough-Kanamori rules.

II. Derivation of Effective Hamiltonian for Kinetic
Exchange

Let us consider a polynuclear system containing identical
paramagnetic ions. The ground states of all constituent ions
are assumed to be orbitally degenerate and we denote them as
|SigrΓigrMigrγigr〉, whereSigr is the ground state spin ofith ion
andMigr is the spin projection,Γigr stands for the irreducible
representation of theOh-group, andγigr enumerates its basis
functions.
We are dealing with the transition metal ions in the cubic

environments, thus the one-electron basis states in the strong
crystal field will be t2 and e, the corresponding orbitals we
denote asæΓiγi (Γi ) t2, e, andγi enumerate the basis functions).
Kinetic exchange appears in the second order of perturbation

procedure with the unperturbed HamiltonianH0 including all

t2

U - J0
- t2

U + J0
≈ 2t2

U
t
J0
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intracenter interactions and the intercenter one-electron transfer
operatorV playing the role of perturbation. This operator can
be represented as a sum of the following two-center contribu-
tions:

HereVΓiγi,Γjγj describes the transfer of the electron from the
orbitalæΓjγj of the jth center to the orbitalæΓiγi of the ith center:

where CΓiγiσ
+ (CΓiγiσ) creates (annihilates) the electron at the

orbital æΓiγi with spin projectionσ (σ ) v or V); t(Γjγj,Γiγi) is
the associated transfer integral. The operatorVΓjγj,Γiγi describes
the inverse transfer process.
OperatorV(i,j) mixes the ground electronic configuration of

the pair of ions di
n - dj

n with the excited charge transfer
configurations di

n-1 - dj
n+1 and di

n+1 - dj
n-1. Let |i, νShΓhMh γj〉

be the oxidized states of ioni corresponding to the di
n-1

configuration and|i, µS̃Γ̃M̃γ̃〉 are the reduced states (di
n+1

configuration). Symbolsν and µ are used to enumerate the
repeating2Sh+1Γh and2S̃+1Γ̃ terms, respectively. The excited CT
states can be taken as the products of the states of individual
ions, namely,|i, νShΓhMh γj〉|j, S̃Γ̃M̃γ̃〉 for di

n-1 - dj
n+1 configura-

tion and |i, νS̃Γ̃M̃γ̃〉|j,νShΓhMh γj〉 for di
n+1 - dj

n-1 configuration.
These states can be regarded as the excited eigenstates of
unperturbed HamiltonianH0 (the eigenstates ofH0 belonging
to the ground manifold are|SigrΓigrMigrγigr〉|SjgrΓjgrMjgrγjgr〉). Using
these notations we can introduce the following effective second-
order Hamiltonian for theij -pair which is operative within the
ground manifold:

whereεν(ShΓh) is the energy ofνth 2Sh+1Γ-term of the dn-1-ion
andεµ(S̃Γ̃) is the energy ofµth 2Sh+1Γ-term for dn+1-ion. The
energy of the ground term of the dn-ion has been set as the
origin of energy. Sinceith and jth ions are assumed to be
identical, these energies do not depend on the numbersi andj.
Following the idea of ref 29 one can represent the two-site

operator 3 in terms of the products of one-site operators:

In eq 4 we have taken into account thatΓi ) Γ′i (both are t2 or e)
andΓj ) Γ′j. Due to this condition, the system is apparently

returned to the ground manifold after the two transfer processes
involved in the second order perturbation procedure.
This Hamiltonian is quite similar to that proposed by Georges

and Drillon.11 The main advantage of such-type Hamiltonian
is that it is expressed in terms of one-site operators. Now we
can pass from the second quantization representation of the
exchange Hamiltonian to the effective Hamiltonian involving
standard orbital operators and spin operators. The most
efficient way of doing that is to take into account symmetry
arguments. First, the creation and annihilation operators behave
as an irreducible tensor operator of the rotation group of the
rank 1/2 acting in the spin space. Second, the fermionic
CΓiγiσ

+ andCΓiγiσ and the corresponding operators41 TΓiγi
1/2,σ and

TΓiγi
1/2,-σ are transformed in the space of electronic coordinates

like the irreducible tensors of the type ofΓiγi under the action
of point symmetry operations.
Applying this two important points and the Wigner-Eckart

theorem24 we can obtain a general expression for the effective
Hamiltonian in function of unit operatorIi, ionic spin operators
Si
1,q, and orbital irreducible tensorsOΓγ

i . The details of the
derivation is given in Appendix I. This Hamiltonian is of the
form

where JΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) is an exchange parameter be-
tween the four orbitals involved in the electron transfers (one
electron is transferred fromΓiγi to Γjγj, and the other from
Γjγ′j to Γiγ′i) andΓ andΓ′ denote the irreducible representa-
tions coming from the direct productsΓi × Γi ) ∑Γ, Γj × Γj

) ∑Γ. UΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) is an additional spin-indepen-
dent parameter that accompany the exchange parameter. This
parameter is also present in the HDVV Hamiltonian but is
omitted because only shifts all energies in a constant. These
effective parameters are defined as follows:

where thea- andb-parameters are defined in Appendix I (eq
AI.8) and evaluated in Appendix II. The parameters of eqs 6
are expressed in terms of transfer parameters and energies of
the different electronic terms involved in the transfers. Thea-
andb-parameters, as it is possible to see in Appendix II, depend
on the mixing between the different terms, so depend on the
single-ion crystal field and the Racah parameters of the
individual ions.
The Hamiltonian in eq 5 does not contain any restrictions on

the symmetry of the whole system while the constituent moieties
are supposed to have a high symmetry (octahedral). The
symmetry of the binuclear unit may be introduced implying
specific conditions for the transfer parameterst’s connecting
magnetic orbitals of the interacting ions. This Hamiltonian

V(i,j) ) ∑
Γiγi

∑
Γjγj

(VΓiγi,Γjγj
+ VΓjγj,Γiγi

) (1)

VΓiγi,Γjγj
) t(Γiγi,Γjγj) ∑

σ

CΓiγiσ
+ CΓjγjσ

(2)

Hex(i,j) ) - ∑
ΓiΓjΓ′iΓ′j

∑
γiγjγ′iγ′j

∑
ShΓh

∑
S̃Γ̃

∑
νµ

[εν(ShΓh) +

εµ(S̃Γ̃)]-1∑
Mh γj

∑
M̃γ̃

[VΓjγj,Γiγi
|i, µS̃Γ̃M̃γ̃〉|j,

νShΓhMh γj〉 〈i, µS̃Γ̃M̃γ̃|〈j, νShΓhMh γj|VΓ′iγ′i,Γ′jγ′j
+

VΓiγi,Γjγj
|i, νShΓhMh γj〉|j, µ S̃Γ̃M̃γ̃〉 ×

〈i, νShΓhMh γj|〈j, µS̃Γ̃M̃γ̃|VΓ′jγ′j,Γ′iγ′i
] (3)

Hex(i,j) ) -∑
ΓiΓj

∑
γiγjγ′iγ′j

∑
ShΓh

∑
S̃Γ̃

∑
νµ

[εν(ShΓh) +

εµ(S̃Γ̃)]-1t(Γiγi,Γjγj)t(Γjγj,Γiγ′i)∑
Mh γj

∑
M̃γ̃

∑
σσ′
×

[CΓiγiσ
+ |i, ν ShΓhMh γj〉 〈i, ν ShΓhMh γj|CΓiγ′iσ′CΓjγjσ

|j, µS̃Γ̃M̃γ̃〉 ×
〈j, µS̃Γ̃M̃γ̃|CΓjγ′jσ′

+ + CΓjγ′jσ′
+ |j, ν ShΓhMh γj〉 ×

〈j, ν ShΓhMh γj|CΓjγjσ
CΓiγ′iσ′|i, µ S̃Γ̃M̃γ̃〉 〈i, µS̃Γ̃M̃γ̃|CΓiγiσ

+ ] (4)

Hex ) ∑
i<j

Hex(i,j) ) -2∑
i<j

∑
ΓiΓj

∑
γiγjγ′iγ′j

∑
Γγ

∑
Γ′γ′

〈Γγ|ΓiγiΓiγ′i〉 ×

〈Γ′γ′| ΓjγjΓjγ′j〉 OΓγ
i OΓ′γ′

j [UΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) I i I j +
JΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) SiSj] (5)

UΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) ) t(Γiγi,Γjγj) t(Γjγ′j,Γiγ′i) ×
∑
ShΓh

∑
S̃Γ̃

∑
νµ

[εν(ShΓh) + εµ(S̃Γ̃)]-1[a1
Γ(Γi, νShΓh)b1

Γ′(Γj, µ S̃Γ̃) +

a1
Γ′(Γj, νShΓh)b1

Γ(Γi, µ S̃Γ̃)]

JΓ,Γ′(Γiγi,Γjγj,Γiγ′i,Γjγ′j) )

-t(Γiγi,Γjγj) t(Γjγ′j,Γiγ′i) ∑
ShΓh

∑
S̃Γ̃

∑
νµ

[εν(ShΓh) +

εµ(S̃Γ̃)]-1[a2
Γ(Γi, νShΓh)b2

Γ′(Γj, µ S̃Γ̃) +

a2
Γ′(Γj, νShΓh)b2

Γ(Γi, µ S̃Γ̃)] (6)
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involves two different parts: one spin independent part as direct
product of orbital matrices and unit matricesOΓγ

i OΓ′γ′
j , I iI j,

and a second spin dependent part as a product of these orbital
matrices and the spin matricesOΓγ

i OΓ′γ′
j SiSj. WhenΓ,Γ′ )

A1 the direct productOΓγ
i OΓ′γ′

j , represents the unit matrix and
this Hamiltonian becomes the well-known HDVV Hamiltonian.
Only whenΓ,Γ′ * A1 we obtain highly anisotropic contributions
which is inherent to the exchange problem of the orbital
degeneracy. The relative importance of the different contribu-
tions governing the magnetic properties may be derived for each
particular case ofSigrΓigr, SjgrΓjgr terms and the overall symmetry
of the binuclear system. Selected examples will be considered
in the following Sections.

III. Kinetic Exchange in Edge-Shared Bioctahedral (D2h)
Dimer

In this Section we illustrate the developed formalism con-
sidering the particular case of edge-shared bioctahedral cluster
of D2h symmetry (Figure 1). We will use the conventional
strong crystal field basis for one-electron orbitals

In order to adapt the general Hamiltonian of eq 5 to this
topology, we should imply theD2h symmetry conditions on the
set of transfer integrals. As one can see only two kinds of
orbitals overlap in an effective manner, namely,ú orbitals
(Figure 1a) and v-orbitals (Figure 1b). The corresponding
transfer integrals will be denoted as〈új|h|úi〉 ≡ t, 〈vj|h| vi〉 ≡ t′.
The úi T új transfer can be considered as the direct process,
meanwhile the transfer involving e-orbitals (vi T vj) occurs
through the ligands. For the sake of simplicity we will take
into consideration only these two sigma pathways neglecting
much less efficient allowed pathways, involvingê, η, and u
orbitals.
Under these conditions only the terms withΓiγi ) Γiγ′i )

t2ú, Γjγj ) Γjγ′j ) t2ú andΓiγi ) Γiγ′i ) ev, Γjγj ) Γjγ′j ) ev
prove to be nonvanishing in the Hamiltonian of eq 5. For the
nonzero Clebsch-Gordan coefficients in eq 5,Γγ, Γγ′ are A1,

Eu, and Ev,38 and hence the Hamiltonian can be expressed in
terms of the direct products of the orbital operatorsOA1

i , OEu
i ,

OEv
i , and scalar product of spin operators. After simple

calculations, we arrive at the following Hamiltonian:

In eqs 7 the short notationsUEE[(t2ú)i(t2ú)j(t2ú)i(t2ú)j] ≡
UEE(ú), etc., are used.
The Hamiltonian of eq 7 is apparently invariant under

symmetry transformations ofD2h point group as well as with
respect to the time reversal operation. From this point of view
this Hamiltonian is formally similar to the effective Hamiltonian
that can be derived on the basis of symmetry arguments only.
This last is overparametrized since it contains additional
invariant products ofOΓγ operators, for exampleOT1γOT1γ which
are odd under time reversions. Each one of these invariant
forms is related to an independent (semiempiric) parameter. For
D2h symmetry, the number of additional parameters of this kind
is equal to 19.
As distinguished from the effective Hamiltonian, derived in

the semiempiric way, the Hamiltonian of eq 7 is based on the
microscopic theory of kinetic exchange, and therefore it is
obtained from the first principles. The main advantage of the
microscopic consideration is that it leads to the relationships
between the parameters involved in the effective Hamiltonian
and reduces considerably the number of the independent
parameters. In fact, theUΓΓ′ and JΓΓ′ parameters are not
independent (they only depend on two transfer integralst and
t′). Moreover, under some realistic physical assumptions about
the transfer integrals some parameters (along with the allowed
operator invariants) do not appear in the Hamiltonian.
The Hamiltonian of eq 7 is valid for all kinds of groundSigrΓigr

terms of the constituent ions but the dependence ofUΓΓ′ and
JΓΓ′ parameters on the transfer integrals is specific for each
ground ionic state. We will focus on the orbital tripletsΓigr )
T2 or T1. In this case the operatorsOΓγ

i are represented by the
matrices given in Appendix III.
The Hamiltonian of eq 7 contains only diagonal orbital

matrices and hence it can be diagonalized in the spin coupled
representation:

Now one can easily obtain the eigenfunctions of the Hamiltonian
of eq 7. The energy pattern consists of two groups of
accidentally four-fold degenerate levels and one nondegenerate
level. The energies of the2S+1Γd terms of the dimer are
summarized in Table 1. The parametersUk andJk (k ) 1, 2,
and 3) as a function ofUΓΓ′ andJΓΓ′ parameters are summarized
in Table 2.

Figure 1. Two main kinds of d-d overlap in the edge-shared
bioctahedral cluster: (a)ú-ú overlap, (b) v-v overlap.

ê ≈ yz, η ≈ y× z, ú ≈ xy (t2)

u≈ 3z2 - r2, v≈ x3(x2 - y2) (e)

Hex(i,j) ) -[(4/3UEE(ú) + UEE(v))OEu
i OEu

j +

(2x23 UA1E
(ú) + UA1E

(v))(OA1

i OEu
j + OEu

i OA1

j )]I iI j -

[(2/3JA1A1
(ú) + JA1A1

(v))OA1

i OA1

j +

(43JEE(ú) + JEE(v))OEu
i OEu

j +

(2x23 JA1E
(ú) + JA1E

(v))(OA1

i OEu
j + OEu

i OA1

j )]SiSj (7)

|SigrΓigrγigr,SjgrΓjgrγjgr, SM〉 )

∑
MigrMjgr

CSigrMigrSjgrMjgr

SM |SigrMigr, SjgrMjgr〉 (8)
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Inspection of Table 1 shows that the energy spectrum for
D2h pair ofSigrΓigr ions is formed by two accidentally degenerate
electronic levels comprising four terms each and one nonde-
generate level. The levels are splitted by the isotropic exchange
interactions according to the Lande’s rule. This result is general
for aD2h pair of transition metal ions possessing orbital ground
state triplets and arbitrarySgr. The parametersUk andJk can
be expressed in terms of the relevant crystal field parameters
Dq and Racah parametersA, B, andC defining the energy
spectrum of the constituent moieties in their ground, oxidized,
and reduced configurations. This task can be solved for each
particular ionic dnSigrΓigr state.

We will illustrate the developed approach taking as an
example a simple case of di

1(2T2) - dj
1(2T2) pair for which all

d2-d0 CT states can be found analytically. These charge
transfer states represent the products of the oxidized vacuum
state (d0 configuration) denoted by|0〉≡ |1A1〉 and reduced states
involving all crystal field S̃Γ̃ states of d2 configuration
(3T1(t2

2,t2e), 1E(t2
2,e2), 1A1(t2

2,e2) and 1T2(t2
2,t2e)). The wave

functions for the repeatingS̃Γ̃ states are given in Appendix IV.

Due to the fact that in the ground state only t2 shell is
populated vT v transfer process is not relevant and the
corresponding parametersUEE(v), UA1E(v), JA1A1(v), JEE(v), and
JA1E(v) vanish. The remaining parametersUEE(ú), UA1E(ú),
JA1A1(ú), JEE(ú), and JA1E(ú) can be found by means of the
calculation of the sets ofa- andb-parameters with the use of
the procedure described in Appendix II. The application of this
procedure requires the knowledge of the reduced matrix
elements of the fermionic operators involved in eqs AII.5 and
AII.6 which can be easily obtained using eqs AII.3 and AII.4
and explicit expressions for the wave functions. Considering,
for example, the oxidized (vacuum) state and taking into account
eq AII.3 and relation

one finds that

Substituting this reduced matrix element into eq AII.5 we
can calculate any matrix element of one-site operator corre-
sponding to the vacuum state. Particularly, we get

On the other hand, upon applying eq AII.1 the same matrix
element can be represented as

Combining eqs 9 and 10 we obtain one equation containing
four unknowna-parameters. The remaining three equations can
be obtained in a similar way from other matrix elements.
Solving this system of equations we find the four a parameters.
They are given in Appendix V (eq AV.1).
In order to find theb-parameters the matrix elements of the

one-site operator related to the reducedµS̃Γ̃ states (d2 config-
uration) should be considered (eqs AII.2 and AII.6). Let us
focus, for instance, on the spin-triplet reduced state|1, 3T1〉.
The last includes the contribution of t2

2 configuration which is
represented by the only Slater determinant:38

whereê areú are t2 spin orbitals with spin projectionsσ ) v.
The creation operator acting on the ground state gives:

Combining eqs 11 and 12 and Appendix II, we get

Substituting the result into eq A2.4 we obtain for the reduced
matrix element

For the second reduced3T1 state the analogous calculation leads
to the following result:

Substituting the reduced matrix element of eq 14 into eq AII.6
one can find all matrix elements of the one-site operator
Cúv G̃(1, 3T1) Cúv

+. For example, we have

TABLE 1: Energies of the 2S+1Γd Terms of an Edge-Shared
Dimer with Symmetry D2h

a

terms energy
2S+1Ag,2S+1B3g,2S+1B2u U1 - J1[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1Au,2S+1B3u,2S+1B1g,2S+1B2g U2 - J2[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1Ag U3 - J3[S(S+ 1)- 2Sgr(Sgr + 1)]

a S is the total spin of dimer.Γd stands for the irreducible
representations ofD2h group. For two identical ionsSigr ) Sigr ) Sgr
andS) 0, 1, ..., 2Sgr.

TABLE 2: Uk and Jk Parameters for the Edge-Shared
Dimer with Symmetry D2h

parameter

U1 -1/3UEE(ú) + 2x2
3

UA1E
(ú) - 1/4UEE(v) + UA1E

(v)

U2 2/3UEE(ú) -
x2
3
UA1E

(ú) + 1/2UEE(v) - 1/2UA1E
(v)

U3 -4/3UEE(ú) - 4x2
3

UA1E
(ú) - UEE(v) - 2UA1E

(v)

J1 1/3JA1A1
(ú) + 1/6JEE(ú) -

x2
3
JA1E

(ú) + 1/2JA1A1
(v) +

1/8JEE(v) - 1/2JA1E
(v)

J2 1/3JA1A1
(ú) - 1/3JEE(ú) + 1

3x2
JA1E

(ú) + 1/2JA1A1
(v) -

1/4JEE(v) + 1/4JA1E
(v)

J3 1/3JA1A1
(ú) + 2/3JEE(ú) + 2x2

3
JA1E

(ú) + 1/2JA1A1
(v) +

1/2JEE(v) + JA1E
(v)

Cúv
+|0〉 ≡ Cúv

+|1A1〉 ) |2T2,Mgr ) 1
2
,ú〉

〈2T2||TT2

1/2||1A1〉 ) 〈2T2,Mgr ) 1/2,ú|Cúv
+|1A1〉 ) 1

〈2T2,Mgr ) 1/2, ú|Cúv
+Gh (1A1)Cúv|2T2,Mgr ) 1/2, ú〉 ) 1

(9)

1

x3
a1
A1(t2,

1A1) + 1

2x3
a2
A1(t2,

1A1) + 2

x6
a1
E(t2,

1A1) +

1

x6
a2
E(t2,

1A1) (10)

|(t22)3T1, M̃ ) 1,â〉 ) -|êú| (11)

Cúv
+|2T2,Mgr ) 1

2
,ê〉 ) -|êú| (12)

〈1,3T1,M̃ ) 1,â|Cúv
+|2T2,Mgr ) 1

2
, ê〉 ) cosθ (13)

〈1,3T1||TT2

1/2||2T2〉 ) -3x2 cosθ (14)

〈2,3T1||TT2

1/2||2T2〉 ) -3x2 sinθ (15)
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The matrix elements of the operatorCúv G̃(2, 3T1) Cúv
+

related to the second reduced state of3T1 type are obtained from
the corresponding matrix elements of eq 16 by means of the
change cos2 θ f sin2 θ. Expressing the same matrix elements
through the parameters b1

Γ(t2, µ 3T1) and b2
Γ(t2, µ 3T1) (µ ) 1

and 2) according to eq AII.2 and solving the systems of linear
equations obtained in this way one gets theb-parameters
associated to the3T1 state (see Appendix V eq AV.2). The
b-parameters associated to the reduced states1A1, 1E, 1T2 can
be calculated in a similar way. They are given by eqs AV.3-
AV.5.
Substitutinga- andb-parameters into the definitions of eqs

6 we find the UΓΓ′ and JΓΓ′ parameters of the effective
Hamiltonian expressed in terms of the transfer integralt, Dq
parameter and Racah parameters of d2-ion. These are sum-
marized in Table 3.
For the sake of simplicity, the difference between the orbital

t2 energies ind1 and d2-ions is neglected. That is why the
excitation energies in Table 3 are roughly associated with the
energies ofµS̃Γ̃ terms of d2-ion in cubic crystal field. It should
be stressed that all these energies must be supplemented by an
additive contribution equal to the Racah parameterA (analog
to the Coulomb energyU in Anderson’s theory).
Finally, introducing theUΓΓ′ andJΓΓ′ parameters (Table 3)

into the formulas of Table 2 we arrive at the final expressions
for Uk andJk (Table 4) defining the energies for the2T2 - 2T2
edge-shared pair.
In Figure 2, we have plotted the energy pattern for this kind

of exchange-coupled systems. As parameters we have used the
Racah parameters calculated for free Ti2+ ion in ref 42: A )
141 000 cm-1, B ) 900 cm-1, C ) 3300 cm-1 (these values
are close to those found in octahedral crystal field38). The cubic
field splitting parameter Dq is taken to be Dq) 1000 cm-1

that is typical for divalent metal ions.38 The transfer parameter
is taken to bet ) 4000 cm-1 (this is within the Anderson’s
estimation4). The spin-independent part of the effective Hamil-
tonian splits the nine orbital states of the pair in three sets of
levels. The accidentally degenerate group of levels I comprising
the orbital states Au, B3u, B1g, and B2g proves to be the ground
one. The first excited level II is the nondegenerate Ag. The
highest excited group of levels III comprises the orbital states
2Ag, B3g, and B2u.
Let us focus now on the effect of the spin-dependent part of

the Hamiltonian. Table 4 allows to make an important
conclusion concerning the general feature of the exchange
splittings in the system under consideration. The degenerate
levels in group I splits under the influence of a weak ferro-
magnetic contribution (J2 > 0) coming from the mixture of these
dimer terms with the excited spin singlet 21T2 and the spin triplet
23T1 terms of the d2 configuration. For group II we observe a
strong antiferromagnetic splitting (J3∼ -210 cm-1) since only
spin singlet states contribute to this parameter (21A1, 21E). As

a result, the singlet level of this group is strongly stabilized
and becomes the ground state of the system. Finally, for group
III we observe no exchange splitting (J1 ) 0), so this group
represent a paramagnetic mixture of singlet and triplet states.
It should be stressed that the ferromagnetic effect in group I
arising from two competing interactions is much weaker than
the antiferromagnetic interaction in the group II where only spin
singlets contribute and therefore the ground state of the system
is antiferromagnetic. In spite of the fact that the exchange
splitting in each group of levels can be described by the Lande’s
rule, the general pattern is much more complicated compara-
tively to the simple Heisenberg scheme due to the interpenetra-
tion of several groups of levels.

IV. Kinetic Exchange in Corner-Shared Bioctahedral
(D4h) Cluster

Now we will consider briefly the corner-shared bioctahedral
system ofD4h symmetry. In this case it is reasonable to neglect
all transfer integrals with the exception of〈êj|h|êi〉 ) 〈ηj|h|ηi〉
≡ t and 〈uj|h|ui〉 ≡ t′ that involves efficiently overlapping
orbitals (Figure 3a,b). Implying these conditions on the
Hamiltonian of eq 5 we obtain after some rearrangements:

where the short notationsUΓΓ′[(t2ê)i(t2ê)j(t2η)i(t2η)j] )
UΓΓ′[(t2η)i(t2η)j(t2ê)i(t2ê)j] ≡ UΓΓ′(êη), etc., are used.
As distinguished from the Hamiltonian of eq 7 related to the

bioctahedral edge-shared cluster the Hamiltonian of eq 17 proves
to be nondiagonal in the basis (eq 8) due to the terms containing
bilinear operator formsOT1γ

i OT1γ
j andOT2ú

i OT2ú
j . The diagonal-

ization can be easily performed using symmetry adapted basis,
the results are summarized in Table 5 in function of theUk and
Jk parameters given in Table 6. While deriving Table 6 we
took into account thatUΓΓ′(η) ) UΓΓ′(ê) andJΓΓ′(η) ) JΓΓ′(ê)
due to the equivalence of two kinds of electron transferê T ê
andη T η.
Table 5 shows that the energy pattern of bioctahedralD4h

cluster with the ground orbital triplets of constituent ions
includes six levels split by the isotropic exchange. Five of them
represent the orbital singlets and one is accidentally degenerate
comprising two orbital doublets (Eg and Eu).
Now we will consider again the particular case of2T2-2T2

pair. In this case the uT u transfer does not participate in the
second order process and hence the parametersUEE(u),
UA1E(u), JA1A1(u), JEE(u), andJA1E(u) should be omitted in Table
6.

Hex(i,j) ) [-(13[UEE(ê) + UEE(η)] +UEE(u))OEu
i OEu

j -

[UEE(ê) + UEE(η)]OEv
i OEv

j + (x23 [UA1E
(ê) + UA1E

(η)] +

UA1E
(u))(OA1

i OEu
j + OEu

i OA1

j ) - 2UT1T1
(êη)OT1γ

i OT1γ
j -

2UT2T2
(êη)OT2ú

i OT2ú
j ]I iI j + [-(23[JA1A1

(ê) + JA1A1
(η)] +

JA1A1
(u))OA1

i OA1

j - (13[JEE(ê) + JEE(η)] +

JEE(u))OEu
i OEu

j - [JEE(ê) + JEE(η)]OEv
i OEv

j +

(x23 [JA1E
(ê) + JA1E

(η)] + JA1E
(u))(OA1

i OEu
j +

OEu
i OA1

j )2JT1T1(êη)OT1γ
i OT1γ

j - 2JT2T2(êη)OT2ú
i OT2ú

j ]SiSj
(17)

〈2T2,Mgr ) 1
2
,ê|Cúv G̃(1,

3T1) Cúv
+|2T2,Mgr ) 1

2
,ê〉 ) cos2 θ

〈2T2,Mgr ) - 1
2
,ê|Cúv G̃(1,

3T1) Cúv
+|2T2,Mgr )

- 1
2
,ê〉 ) 1

2
cos2 θ

〈2T2,Mgr ) 1
2
,ú|Cúv G̃(1,

3T1) Cúv
+|2T2,Mgr ) 1

2
,ú〉 ) 0

〈2T2,Mgr ) - 1
2
,ú|Cúv G̃(1,

3T1) Cúv
+|2T2,Mgr ) - 1

2
,ú〉 ) 0

(16)
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In addition to thea-, andb-parameters already calculated (eqs
AV.1-AV.5) some new kinds of these parameters appear for
the D4h topology. The results for them are given in the
Appendix V (eqs AV.6-AV.10). Substituting a- and b-
parameters into Table 6 we expressUk andJk parameters through
the transfer integralt and the set of the ionic energy spectrum
parameters. The results are in Table 7.
The energy pattern for2T2-2T2 corner-shared pair (D4h

topology) calculated for the same set of parameters as in the

edge-shared dimer (D2h topology) is shown in Figure 4. In this
case the spin-independent part of the Hamiltonian leads to a
splitting of the dimer terms in six levels. These are further
splitted under the action of spin-dependent part of the Hamil-
tonian in such a way that several terms (1,3B2u, 1,3B1g, 1,3A1g)
split in a antiferromagnetic fashion (J1, J2, J4 < 0), others (1,3Eu,
1,3Eg, 1,3A1u) in a ferromagnetic one (J3, J5 > 0), and the term
1,3A1g do not split (J6 ) 0). The ferromagnetic parameterJ3 is
the largest one (J3≈ 235 cm-1) due to the fact thatJ3 does not
contain competitive antiferromagnetic terms (Table 7). Thus,
the term3A1u proves to be the ground one and the dimer is
expected to be ferromagnetic. The next excited level1,3Eu, 1,3Eg
(accidentally degenerate) exhibits a weak ferromagnetic splitting
(J5≈ 5 cm-1) due to the competition of ferromagnetic (coming
from 23T1 terms in CT spectrum) and antiferromagnetic (coming
from 21T2 terms) contributions. The next terms1,3B2u, 1,3B1g,
1,3A1g are very close in energy and the corresponding exchange
interactions are strongly antiferromagnetic (J1≈ J2≈ J4≈-216
cm-1) due to the contribution of different low-spin excited states.
It is remarkable that all spin triplets arising from antiferromag-
netically split levels coincide with the nonsplitted1,3A1g level.

V. Concluding Remarks

In this paper we have presented a new approach to the
problem of kinetic exchange for orbitally degenerate ions. The
constituent metal ions are supposed to be octahedrally coordi-
nated (although the general expressions do not restrict in this
point), and strong crystal field scheme is employed. The highly

TABLE 3: UΓΓ′ and JΓΓ′ Parameters for 2T2-2T2 Edge-Shared Dimera

UEE(ú) t2[- cos2 θ
2ε1(

3T1)
- sin2 θ
2ε2(

3T1)
+ cos2 R
9ε1(

1A1)
+ sin2 R
9ε2(

1A1)
+ 2cos2 â
9ε1(

1E)
+ 2sin2 â
9ε2(

1E)
- cos2 δ
6ε1(

1T2)
- sin2 δ
6ε2(

1T2)]
UA1E(ú) t2[ cos2 θ

4x2ε1(3T1)
+ sin2 θ

4x2ε2(3T1)
+ cos2 R
9x2ε1(1A1)

+ sin2 R
9x2ε2(1A1)

+ 2cos2 â

9x2ε1(1E)
+ 2sin2 â

9x2ε2(1E)
+ cos2 δ

12x2ε1(1T2)
+ sin2 δ

12x2ε2(1T2)]
JA1A1(ú) -t2[- 2cos2 θ

3ε1(
3T1)

- 2sin2 θ
3ε2(

3T1)
+ 2cos2 R
9ε1(

1A1)
+ 2sin2 R
9ε2(

1A1)
+ 4cos2 â
9ε1(

1E)
+ 4sin2 â
9ε2(

1E)
+ 2cos2 δ
3ε1(

1T2)
+ 2sin2 δ
3ε2(

1T2)]
JEE(ú) -t2[2cos2 θ

3ε1(
3T1)

+ 2sin2 θ
3ε2(

3T1)
+ 4cos2 R
9ε1(

1A1)
+ 4sin2 R
9ε2(

1A1)
+ 8cos2 â
9ε1(

1E)
+ 8sin2 â
9ε2(

1E)
- 2cos2 δ
3ε1(

1T2)
- 2sin2 δ
3ε2(

1T2)]
JA1E(ú) -t2[- cos2 θ

3x2ε1(3T1)
- sin2 θ

3x2ε2(3T1)
+ 4cos2 R
9x2ε1(1A1)

+ 4sin2 R
9x2ε2(1A1)

+ 8cos2 â

9x2ε1(1E)
+ 8sin2 â

9x2ε2(1E)
+ cos2 δ

3x2ε1(1T2)
+ sin2 δ

3x2ε2(1T2)]
a The energies (withoutA) can be taken directly from the Tanabe-Sugano diagrams (the matrices for the repeated terms are given in ref 38, p

294). The mixing coefficients (defined byR, â, θ, andδ angles) are given in Appendix II.

TABLE 4: Uk and Jk Parameters for 2T2-2T2 Edge-Shared Dimer Expressed in Function of Transfer Parameter and Energies

U1 t2[ cos2 θ
3ε1(

3T1)
+ sin2 θ
3ε2(

3T1)
+ cos2 R
27ε1(

1A1)
+ sin2 R
27ε2(

1A1)
+ 2cos2 â
27ε1(

1E)
+ 2sin2 â
27ε2(

1E)
+ cos2 δ
9ε1(

1T2)
+ sin2 δ
9ε2(

1T2)]
U2 t2[- 5cos2 θ

12ε1(
3T1)

- 5sin2 θ
12ε2(

3T1)
+ cos2 R
27ε1(

1A1)
+ sin2 R
27ε2(

1A1)
+ 2cos2 â
27ε1(

1E)
+ 2sin2 â
27ε2(

1E)
- 5cos2 δ
36ε1(

1T2)
- 5sin2 δ
36ε2(

1T2)]
U3 t2[ cos2 θ

3ε1(
3T1)

+ sin2 θ
3ε2(

3T1)
- 8cos2 R
27ε1(

1A1)
- 8sin2 R
27ε2(

1A1)
- 16cos2 â
27ε1(

1E)
- 16sin2 â
27ε2(

1E)
+ cos2 δ
9ε1(

1T2)
+ sin2 δ
9ε2(

1T2)]
J1 0

J2 t2

2[cos2 θ
ε1(

3T1)
+ sin2 θ
ε2(

3T1)
- cos2 δ
ε1(

1T2)
- sin2 δ
ε2(

1T2)]
J3 - 2t2

3 [cos2 R
ε1(

1A1)
+ sin2 R
ε2(

1A1)
+ 2cos2 â
ε1(

1E)
+ 2sin2 â
ε2(

1E) ]

Figure 2. Energy pattern of the edge-shared bioctahedral (D2h) cluster
consisting of one-electron ions: (a) spin-independent splitting, (b) spin-
dependent splitting.
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anisotropic effective Hamiltonian of the kinetic exchange is
expressed in terms of standard matrices of the unit irreducible
cubic tensors acting in the space of orbital functions and spin
operators. Starting from the definite ground termsSgrΓgr of
building blocks (octahedral subunits), we construct the most
general form of the effective Hamiltonian containing orbital
operatorsOΓγ (with Γ∈Γgr × Γgr) and spin operators.

The parameters of the exchange Hamiltonian are expressed
in terms of the fundamental parameters of the monomeric
subunits and a set of one-electron transfer parameters. The
problem of eigenstates and spin vectors for each octahedral site
is supposed to be solved with due accuracy. In the framework
of crystal field theory we are dealing with the cubic field
splitting and Racah parameters that can be determined inde-
pendently, for instance, from spectroscopic data. The effects
of covalency can be also included in the evaluation of the
effective Hamiltonian parameters if the corresponding data about
the internal structure of monomeric subunits are available.

The overall symmetry of the system is implied by the
restricted set of the transfer parameters. The suggested approach
can be applied not only to the ground states of interacting ions
but also to their excited states. This could be useful, for
example, in the problem of optical spectroscopy of this type of
exchange dimer.
In order to illustrate the mathematical procedure and some

consequences of the exchange in the case of orbital degeneracy
we have considered two cases: edge-shared (D2h) and corner-
shared (D4h) octahedral dimers. For both cases the effective
Hamiltonian was derived for arbitrarySgrΓgr terms. As distin-
guished from the general (semiempirical) Hamiltonian, based
on the point symmetry and time reversal arguments, the
Hamiltonian derived in the framework of microscopic approach
proves to be much more simple. In fact, the number of
parameters entering in the last Hamiltonian is much less,
moreover all these parameters are not independent and are
expressed in terms of two transfer integrals.
In particular case of d1-ions (2T2 ground terms) we have found

unexpected features of the exchange splitting contradicting the
conventional points of view on the role of degeneracy. In both
cases (D2h andD4h) we found a weak ferromagnetic splitting
for several multiplets of the system. The exchange parameter
for these multiplets is formed by competitive ferro- and
antiferromagnetic contributions arising from high- and low-spin
reduced states. This result is in compliance with Anderson’s
definition of third-order effect (Jferro≈ (t2/U)(t/J0)) and Good-
enough-Kanamori rules. At the same time, in the edge-shared
system strong antiferromagnetic interaction (coming from low-
spin excited terms, only) was found for a group of multiplets
giving rise to an antiferromagnetic ground state for the dimer.
In the corner-shared system we have found one strong ferro-
magnetic interaction (coming from high-spin states only and
giving rise to a ferromagnetic ground state of the dimer), and
two strong antiferromagnetic interaction (arising from low-spin
excited states). These conclusions show that McConell mech-
anism of ferromagnetic interaction for orbitally degenerate
subunits can be invalid under some conditions. The results show
also that the simple qualitative models have a restricted area of
application for the high-symmetric exchange system possessing
orbital degeneracy.
In this article we have not considered the third actual topology

of the dimer, namely, face-shared dimer. We are aimed to
consider this problem elsewere with particular emphasis on the
magnetic data concerning [Ti2Cl9]3- dimers and the contradic-
tory theoretical conclusions of refs 30 and 39. The other
problem we are going to address to is the exchange interaction
between orbitally degenerate ions Fe2+ and Co2+. Many clusters
of this kind are known that requires the development of a
rigorous exchange model taking into account the orbital
momentum contributions. Notice in particular the series of high-
symmetrical M4 clusters embedded in polyoxometalate frame-
works of the type [M4(H2O)2(PW9O34)2]10- recently character-
ized by us from magnetic susceptibility and inelastic neutron
scattering spectroscopy (see review article ref 43 and references
therein). Finally, it should be noted that in our consideration
we were intended mainly to derive the effective Hamiltonian
for the kinetic exchange and to illustrate the mathematical
procedure. For this reason we have neglected spin-orbital
interaction that can be important for orbital triplets and should
be taken into account in discussion of experimental data along
with low symmetry crystal fields. From the computational point
of view these problems dealing with one-center interactions do
not present difficulties and will be considered in the next future.

Figure 3. Three main kinds of d-d overlap in the corner-shared
bioctahedral cluster: (a)ê-ê overlap, (b)η-η overlap, (c) u-u overlap.

TABLE 5: Energies of the 2S+1Γd Terms of an
Corner-Shared Dimer with Symmetry D4h

a

terms energy
2S+1A1g U1 - J1[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1B1g U2 - J2[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1A1u U3 - J3[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1B2u U4 - J4[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1Eu,2S+1Eg U5 - J5[S(S+ 1)- 2Sgr(Sgr + 1)]
2S+1A1g U6 - J6[S(S+ 1)- 2Sgr(Sgr + 1)]

a S is the total spin of dimer;Γd stands for the irreducible
representations ofD4h group. For two identical ionsSigr ) Sigr ) Sgr
and S) 0, 1, ..., 2Sgr.
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The problem of vibronic Jahn-Teller interaction44 seems to
be inherent for the orbitally degenerate ions. This problem
deserves special consideration. The vibronic interaction can

reduce some interionic interactions in clusters45 and give rise
to the correlation between local distortions in crystals (orbital
and structural ordering phenomena).46,47 Consideration of the

TABLE 6: Uk and Jk Parameters for the Corner-Shared Dimer with SymmetryD4h

U1 -5/3UEE(ê) - 4

3x2
UA1E

(ê) + UT1T1
(êη) + UT2T2

(êη) - 1/4UEE(u)- UA1E
(u)

U2 -5/3UEE(ê) - 4

3x2
UA1E

(ê) - UT1T1
(êη) - UT2T2

(êη) - 1/4UEE(u)- UA1E
(u)

U3 4/3UEE(ê) - 4

3x2
UA1E

(ê) - UT1T1
(êη) + UT2T2

(êη) - 1/4UEE(u)- UA1E
(u)

U4 4/3UEE(ê) - 4

3x2
UA1E

(ê) + UT1T1
(êη) - UT2T2

(êη) - 1/4UEE(u)- UA1E
(u)

U5 1/3UEE(ê) + 2

3x2
UA1E

(ê) + 1/2UEE(u)+ 1/2UA1E
(u)

U6 -2/3UEE(ê) + 8

3x2
UA1E

(ê) - UEE(u)+ 2UA1E
(u)

J1 2/3JA1A1
(ê) + 5/6JEE(ê) + 2

3x2
JA1E

(ê) - 1/2UT1T1
(êη) - 1/2JT2T2(êη) + 1/2JA1A1

(u)+ 1/8JEE(u)+ 1/2JA1E
(u)

J2 2/3JA1A1
(ê) + 5/6JEE(ê) + 2

3x2
JA1E

(ê) + 1/2UT1T1
(êη) + 1/2JT2T2(êη) + 1/2JA1A1

(u)+ 1/8JEE(u)+ 1/2JA1E
(u)

J3 2/3JA1A1
(ê) - 2/3JEE(ê) + 2

3x2
JA1E

(ê) + 1/2JT1T1(êη) - 1/2JT2T2(êη) + 1/2JA1A1
(u)+ 1/8JEE(u)+ 1/2JA1E

(u)

J4 2/3JA1A1
(ê) - 2/3JEE(ê) + 2

3x2
JA1E

(ê) - 1/2JT1T1(êη) + 1/2JT2T2(êη) + 1/2JA1A1
(u)+ 1/8JEE(u)+ 1/2JA1E

(u)

J5 2/3JA1A1
(ê) - 1/6JEE(ê) - 1

3x2
JA1E

(ê) + 1/2JA1A1
(u)- 1/4JEE(u)- 1/4JA1E

(u)

J6 2/3JA1A1
(ê) + 1/3JEE(ê) - 4

3x2
JA1E

(ê) + 1/2JA1A1
(u)- 1/2JEE(u)- JA1E

(u)

TABLE 7: Uk and Jk Parameters for 2T2-2T2 Corner-Shared Dimer Expressed in Function of Transfer Parameter and Energies

U1 t2[2cos2 θ
3ε1(

3T1)
+ 2sin2 θ
3ε2(

3T1)
+ 2cos2 R
27ε1(

1A1)
+ 2sin2 R
27ε2(

1A1)
- 23cos2 â
27ε1(

1E)
- 23sin2 â
27ε2(

1E)
+ 2cos2 δ
9ε1(

1T2)
+ 2sin2 δ
9ε2(

1T2)]
U2 t2[2cos2 θ

3ε1(
3T1)

+ 2sin2 θ
3ε2(

3T1)
- 16cos2 R
27ε1(

1A1)
- 16sin2 R
27ε2(

1A1)
- 5cos2 â
27ε1(

1E)
- 5sin2 â
27ε2(

1E)
+ 2cos2 δ
9ε1(

1T2)
+ 2sin2 δ
9ε2(

1T2)]
U3 t2[- 7cos2 θ

3ε1(
3T1)

- 7sin2 θ
3ε2(

3T1)
+ 2cos2 R
27ε1(

1A1)
+ 2sin2 R
27ε2(

1A1)
+ 4cos2 â
27ε1(

1E)
+ 4sin2 â
27ε2(

1E)
+ 2cos2 δ
9ε1(

1T2)
+ 2sin2 δ
9ε2(

1T2)]
U4 t2[2cos2 θ

3ε1(
3T1)

+ 2sin2 θ
3ε2(

3T1)
+ 2cos2 R
27ε1(

1A1)
+ 2sin2 R
27ε2(

1A1)
+ 4cos2 â
27ε1(

1E)
+ 4sin2 â
27ε2(

1E)
- 7cos2 δ
9ε1(

1T2)
- 7sin2 δ
9ε2(

1T2)]
U5 t2[- cos2 θ

12ε1(
3T1)

- sin2 θ
12ε2(

3T1)
+ 2cos2 R
27ε1(

1A1)
+ 2sin2 R
27ε2(

1A1)
+ 4cos2 â
27ε1(

1E)
+ 4sin2 â
27ε2(

1E)
- cos2 δ
36ε1(

1T2)
- sin2 δ
36ε2(

1T2)]
U6 t2[2cos2 θ

3ε1(
3T1)

+ 2sin2 θ
3ε2(

3T1)
+ 2cos2 R
27ε1(

1A1)
+ 2sin2 R
27ε2(

1A1)
+ 4cos2 â
27ε1(

1E)
+ 4sin2 â
27ε2(

1E)
+ 2cos2 δ
9ε1(

1T2)
+ 2sin2 δ
9ε2(

1T2)]
J1 -2t2[cos2 â

ε1(
1E)

+ sin2 â
ε2(

1E)]
J2 -2/3t

2[2cos2 R
ε1(

1A1)
+ 2sin2 R
ε2(

1A1)
+ cos2 â
ε1(

1E)
+ sin2 â
ε2(

1E)]
J3 2t2[cos2 θ

ε1(
3T1)

+ sin2 θ
ε2(

3T1)]
J4 -2t2[cos2 δ

ε1(
1T2)

+ sin2 δ
ε2(

1T2)]
J5 t2

2[cos2 θ
ε1(

3T1)
+ sin2 θ
ε2(

3T1)
- cos2 δ
ε1(

1T2)
- sin2 δ
ε2(

1T2)]
J6 0
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magnetic vibronic problem in clusters and cooperative phe-
nomena in solids consisting of degenerate metal ions require
the knowledge of the explicit form of the exchange Hamiltonian.
We hope that the results presented here may be helpful in this
area, and in future we give a comparison between the theoretical
results and experimental edge-shared and corner-shared clusters.
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Appendix I. Evaluation of the Hamiltonian

In order to consider the symmetry properties of the one-site
operators entering in eq 4 we will define the “partial” projection
operators:

These operators are evidently invariant under the transformations
of the point symmetry group of local surrounding of metal sites
as well as under the rotations in spin space. Due to the scalar
properties of the operators (eq AI.1) the symmetry (in both
coordinate and spin spaces) properties of the one-site operators

are determined only by the products of creation and annihilation
operators. Therefore these operators represent the double-tensor
operators being transformed like the direct product
Γi×Γi ) ∑Γ in the coordinate space andD(1/2) × D(1/2) )
∑k)0,1D(k) in the spin space. They are in general reducible and
can be represented in terms of irreducible tensors
XΓγ
kq(Γi,νShΓh) and ZΓγ

kq(Γj, µ S̃Γ̃) by means of the following
unitary transformation:

and

In eqs AI.2 and AI.3Cs1m1

s
s2

m
m2

and 〈Γγ|Γ1γ1Γ2γ2〉 are the
Clebsch-Gordan coefficients for the rotation group and local
point group respectively. Since the operatorsXΓγ

kq andZΓγ
kq are

the irreducible double tensors, the Wigner-Eckart theorem38
can be applied to the calculation of the matrices of these
operators in the basis of the ground states of each ion. For
instance,

where〈‚‚‚|‚‚‚〉 is the reduced matrix element and (Γigr) is the
dimension of the irreducible representationΓigr. Let us define
the unit operatorI i acting in the spin space ofith ion in the
usual manner as an irreducible tensor operator of the rankk )
0, possessing the reduced matrix element〈Sigr|I i|Sigr〉 ) (2Sigr
+ 1)1/2. Thus, according to the Wigner-Eckart theorem, one
can write: 〈SigrMigr|I i|SigrM′igr〉 ) δMigrM′′igr.

Using further the
usual definition of the ionic spin operatorSi as an irreducible
tensor operator of the rankk ) 1, we can write for the matrix
elements of its components:

where the reduced matrix element is given by the formula,

Finally one can introduce the one-center orbital irreducible
tensor operatorsOΓγ

i acting in the orbital subspace so that their
reduced matrix elements are

and hence

It is now straightforward work to express the irreducible
tensor operatorsXΓγ

kq and ZΓγ
kq, in terms of unit operatorsI i,

ionic spin operatorsSi
1,q, and orbital irreducible tensorsOΓγ

i as
follows:

Figure 4. Energy pattern of the corner-shared bioctahedral (D4h) cluster
consisting of one-electron ions: (a) spin-independent splitting, (b) spin-
dependent splitting.

Gh i(νShΓh) ) ∑
Mh γj
|i, νShΓhMh γj〉〈i, νShΓhMh γj| (AI.1)

G̃j(µ S̃Γ̃) ) ∑
M̃γ̃

|j, µ S̃Γ̃M̃γ̃〉〈j, µ S̃Γ̃M̃γ̃|

CΓiγiσ
+ Gh i(νShΓh) CΓiγ′iσ′ andCΓjγjσ

G̃j(µ S̃Γ̃) CΓjγ′jσ′
+

CΓiγiσ
+ Gh i(νShΓh) CΓiγ′iσ′ ) (-1)1/2-σ′ TΓiγi

1/2,σGh i(νShΓh) TΓiγ′i
1/2,-σ′ )

(-1)1/2-σ′ ∑
kq

C1/2σ1/2-σ′
kq ∑

Γγ

〈Γγ|ΓiγiΓiγ′i〉 XΓγ
kq(Γi,νShΓh) (AI.2)

CΓjγjσ
G̃j(µ S̃Γ̃) CΓjγ′jσ′

+ ) (-1)1/2-σ TΓjγj
1/2,-σ G̃j(µ S̃Γ̃) TΓjγ′j

1/2,σ′ )

(-1)1/2-σ ∑
kq

C1/2-σ1/2σ′
k q ∑

Γγ

〈Γγ|ΓjγjΓjγ′j〉 ZΓγ
kq(Γj,µS̃Γ̃) (AI.3)

〈SigrΓigrMigrγigr|XΓγ
kq(Γi,νShΓh)|SigrΓigrM′igrγ′igr〉 )

[(2Sigr + 1)(Γigr)]
-1/2〈SigrΓigr||XΓ

k(Γi,νShΓh)||SigrΓigr〉 ×
〈Γigrγigr|Γigrγ′igrΓγ〉CSigrM′igrkq

SigrMigr (AI.4)

〈SigrMigr|Si1,q|SigrM′igr〉 )

(2Sigr + 1)-1/2〈Sigr|Si
1|Sigr〉 CSigrM′igr1q

SigrMigr (AI.5)

〈Sigr|Si
1|Sigr〉 ) [Sigr(Sigr + 1)(2Sigr + 1)]1/2

〈Γigr|OΓ
i |Γigr〉 ) (Γigr)

1/2

〈Γigrγigr|OΓγ
i |Γigrγ′igr〉 ) 〈Γigrγigr|Γigrγ′igrΓγ〉 (AI.6)

XΓγ
00(Γi,νShΓh) ) 2a1

Γ(Γi,νShΓh)OΓγ
i I i

XΓγ
1q(Γi,νShΓh) ) a2

Γ(Γi,νShΓh)OΓγ
i Si

1,q

ZΓγ
00(Γj,µS̃Γ̃) ) 2b1

Γ(Γj,µ S̃Γ̃)OΓγ
j I j

ZΓγ
1q(Γj, µ S̃Γ̃) ) b2

Γ(Γj, µ S̃Γ̃)OΓγ
j Sj

1,q (AI.7)
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The coefficients a and b are proportional to the reduced matrix
elements of the operatorsXΓγ

kq andZΓγ
kq:

Performing the summations overk andq in eqs AI.2 and AI.3
and taking into account eqs AI.7 we can represent the different
one-site operators involved in the Hamiltonian (eq 4) in the
following form:

Now we are in the position to write the final expression for
the effective kinetic exchange Hamiltonian related to the system
of orbitally degenerate transition metal ions. This Hamiltonian
is expressed in eq 5.

Appendix II. Evaluation of the a- and b-Parameters in
the Effective Hamiltonian

Equation 6 contains as unknown parametersa1
Γ(Γi, νShΓh),

b1
Γ(Γi, µS̃Γ̃), etc. Now we will describe the general way to
evaluate these parameters, this procedure will be exemplified
latter on. First, using eqs AI.2 and AI.7 one can express the
matrix elements of one-site operatorsCΓiγiσ

+ Gh i(νShΓh) CΓiγ′iσ′
related to the di

n-1 ion in terms ofa-parameters. Providingσ
) σ′ ) v, we get

Similarly taking into account eqs AI.3 and AI.7, one can
represent the matrix element of di

n+1 site operator
CΓiγiσ

G̃i(µS̃Γ̃)CΓiγ′iσ′
+ with σ ) σ′ ) v as the following linear

combination ofb-parameters:

Equations AII.1 and AII.2 express the matrix elements of
one-site operators in terms of the unknown parametersa1, a2,
b1, andb2 involved in the effective Hamiltonian (eq 5). In order
to evaluate these parameters, some of these matrix elements
have to be calculated directly, decomposing these matrix
elements into products of the matrix elements of the creation
and annihilation operators. This calculation can be essentially
simplified using the above mentioned symmetry properties of
the fermionic creation and annihilation operators. Since the
creation operator represents the double irreducible tensor
operator acting in both coordinate and spin subspaces, the
Wigner-Eckart theorem can be applied to the calculation of
its matrix element. This allows to obtain the matrix element
linking the ground state of the ion with its oxidized and reduced
ionic states.
For the oxidized stateShΓh (di

n-1 configuration), we have:

where〈SigrΓigr|TΓi

1/2|νShΓh〉 is the reduced matrix element of the
operatorTΓiγi

1/2σ.
For the reduced stateS̃Γ̃ (di

n-1 configuration) one can write
down:

The corresponding matrices of the annihilation operator are
Hermitian conjugated to those given by eqs AII.3 and AII.4.
Using eqs AII.3 and AII.4 along with the definition of the

partial projection operators (eqs AI.1), one can represent the
complex matrix elements (eqs AII.1 and AII.2) in terms of
reduced matrix elements of creation operator linking the ionic
ground state with the oxidized and reduced states. The results
are the following:

Equations AII.5 and AII.6 make it possible to find all matrix
elements of one-site operators provided that we know the

a1
Γ(Γi,νShΓh) ) 1

2x2
[(2Sigr + 1)(Γigr)]

-1/2×

〈SigrΓigr|XΓ
0(Γi,νShΓh)|Sigr Γigr〉

a2
Γ(Γi,νShΓh) ) x2[Sigr(Sigr + 1)(2Sigr + 1)(Γigr)]

-1/2×
〈SigrΓigr|XΓ

1(Γi,νShΓh)|Sigr Γigr〉

b1
Γ(Γj, µ S̃Γ̃) ) - 1

2x2
[(2Sjgr + 1)(Γjgr)]

-1/2×

〈SjgrΓjgr|ZΓ
0(Γj, µ S̃Γ̃)|Sjgr Γjgr〉

b2
Γ(Γj, µ S̃Γ̃) ) - x2[Sjgr(Sjgr + 1)(2Sjgr + 1)(Γjgr)]

-1/2×
〈SjgrΓjgr|ZΓ

1(Γj, µ S̃Γ̃)|Sjgr Γjgr〉 (AI.8)

CΓiγi v(V)
+ Gh i(νShΓh) CΓiγ′i V(v) )

-x2∑
Γγ

〈Γγ|ΓiγiΓiγ′i〉a2
Γ(Γi,νShΓh)OΓγ

i Si
1,(1

CΓiγi v(V)
+ Gh i(νShΓh) CΓiγ′i v(V) )

∑
Γγ

〈Γγ|ΓiγiΓiγ′i〉OΓγ
i [a1

Γ(Γi,νShΓh)I i ( a2
Γ(Γi,νShΓh) Si

1,0]

CΓjγjv(V)
G̃j(µ S̃Γ̃) CΓjγ′j V(v)

+ )

-x2∑
Γγ

〈Γγ|ΓjγjΓjγ′j〉b2
Γ(Γj, µ S̃Γ̃)OΓγ

j Sj
1,-1

CΓjγj v(V) G̃j(µS̃Γ̃) CΓjγ′j v(V)
+ )

∑
Γγ

〈Γγ|ΓjγjΓjγ′j〉OΓγ
j [b1

Γ(Γj, µ S̃Γ̃)I j ( b2
Γ(Γj, µ S̃Γ̃)Sj

1,0]

(AI.9)

〈SigrΓigrMigrγigr|CΓiγi v
+ Gh i(νShΓh)CΓiγ′i v|SigrΓigrM′igrγ′igr〉 )

∑
Γγ

〈Γγ|ΓiγiΓiγ′i〉〈Γigrγigr|Γigrγ′igrΓγ〉[a1
Γ(Γi,νShΓh) +

a2
Γ(Γi,νShΓh) xSigr(Sigr + 1)CSigrMigr 10

SigrMigr ]δMigrM′igr
(AII.1)

〈SigrΓigrMigrγigr|CΓiγi vG̃i(µS̃Γ̃)CΓiγ′i v
+ |SigrΓigrM′igrγ′igr〉 )

∑
Γγ

〈Γγ|ΓiγiΓiγ′i〉〈Γigrγigr|Γigrγ′igrΓγ〉[b1
Γ(Γi,µS̃Γ̃) -

b2
Γ(Γi,µS̃Γ̃) xSigr(Sigr + 1)CSigrMigr 10

SigrMigr ]δMigrM′igr
(AII.2)

〈SigrΓigrMigrγigr|CΓiγiσ
+ |i, νShΓhMh γj〉 ) [(2Sigr + 1)(Γigr)]

-1/2×
〈SigrΓigr|TΓi

1/2|νShΓh〉〈Γigrγigr|ΓhγjΓiγi〉CShMh 1/2σ
SigrMigr (AII.3)

〈i,µS̃Γ̃M̃γ̃|CΓiγiσ
+ |SigrΓigrM′igrγ′igr〉 ) [(2S̃+ 1)(Γ̃)]-1/2×

〈µS̃Γ̃|TΓi

1/2|SigrΓigr〉〈Γ̃γ̃|Γigrγ′igrΓiγi〉CSigrM′igr1/2σ
S̃ M̃ (AII.4)

〈SigrΓigrMigrγigr|CΓiγiσ
+ Gh i(νShΓh)CΓiγ′iσ′ |SigrΓigrM′igrγ′igr〉 )

[(2Sigr + 1)(Γigr)]
-1〈SigrΓigr|TΓi

1/2|νShΓh〉2∑
γj

〈Γigrγigr|ΓhγjΓiγi〉 ×

〈Γigrγ′igr|ΓhγjΓiγ′i〉 ∑
Mh
C
ShMh 1/2σ
SigrMigr C

ShMh 1/2σ′
SigrM′igr (AII.5)

〈SigrΓigrMigrγigr|CΓiγiσ
G̃i(µS̃Γ̃)CΓiγ′i σ′

+ |SigrΓigrM′igrγ′igr〉 )

[(2S̃+ 1)(Γ̃)]-1〈µS̃Γ̃|TΓi
1/2|SigrΓigr〉

2∑
γ̃

〈Γ̃γ̃|ΓigrγigrΓiγi〉 ×

〈Γ̃γ̃|ΓigrγigrΓiγ′i〉∑
M̃

CSigrMigr1/2σ
S̃ M̃ CSigrM′igr1/2σ′

S̃ M̃ (AII.6)
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involved reduced matrix elements of the fermionic operators.
The last can be found for each system using the explicit
expressions (in terms of Slater determinants) for the wave
functions of ground, reduced, and oxidized ionic states.
Setting the write sides of eqs AII.1 and AII.2 to the

corresponding values of matrix elements obtained directly (eqs
AII.5 and AII.6) we arrive at systems of linear algebraic
equations with respect to the quantitiesa1

Γ(Γi,νShΓh),
b1

Γ(Γi,µS̃Γ̃), etc. Solving these systems of equations and
substituting the results into the eqs 6 we can finally find the
parametersUΓ,Γ′(...) andJΓ,Γ′(...) defining the effective Hamil-
tonian (eq 5) as the functions of relevant transfer parameters
and the single-ion crystal field parameters.

Appendix III

MatricesOΓγ in the Hamiltonians of eqs 7 and 17:

where ê, η, and ú stand for the basis T2 and R, â, and γ
enumerate the basis of T1(Lx, Ly, Lz), the signs( relate to the
basis T2(T1).

Appendix IV

The wave functions for the repeatingS̃Γ̃ terms of d2-ion:

where R, â, and θ and δ can be obtained from the next
expressions:

The expressions of the wave functions|t22S̃Γ̃M̃γ̃〉, |t2eS̃Γ̃M̃γ̃〉,
and |e2S̃Γ̃M̃γ̃〉 in terms of Slater determinants are given in ref
38 (pp 53 and 54).

Appendix V

Parametersa1,2
A1(t2,1A1), a1,2

E (t2,1A1), b1,2
A1(t2, µ S̃Γ̃), and

b1,2
E (t2, µ S̃Γ̃) (these parameters appear for bothD2h andD4h

topologies):
ShΓh)1A1 (vacuum state)

S̃Γ̃ ) 3T1

S̃Γ̃ ) 1A1

S̃Γ̃ ) 1E

OA1
)

ê(R) η(â) ú(γ)

[1 0 0
0 1 0
0 0 1 ], OEu )

ê(R) η(â) ú(γ)

[- 1
2

0 0

0 - 1
2

0

0 0 1
]

(AIII.1)

OEv )

ê(R) η(â) ú(γ)

[x32 0 0

0 -
x3
2

0

0 0 0
], OT1γ

)

ê(R) η(â) ú(γ)

[0 ( 1

x2 0

-
1

x2 0 0

0 0 0
],

OT2ú
)

ê(R) η(â) ú(γ)

[0 1

x2 0

1

x2 0 0

0 0 0
] (AIII.2)

|1,3T1〉 ) cosθ|t22,3T1〉 - sinθ|t2e,3T1〉
|2,3T1〉 ) sinθ|t22,3T1〉 + cosθ|t2e,3T1〉
|1,1A1〉 ) cosR|t22,1A1〉 - sinR|e2,1A1〉

|2,1A1〉 ) sinR|t22,1A1〉 + cosR|e2,1A1〉

|1,1E〉 ) cosâ|t22,1E〉 - sinâ|e2,1E〉

|2,1E〉 ) sinâ|t22,1E〉 + cosâ|e2,1E〉

|1,1T2〉 ) cosδ|t22,1T2〉 - sinδ|t2e,1T2〉
|2,1T2〉 ) sinδ|t22,1T2〉 + cosδ|t2e,1T2〉

tan(2θ) ) 12B
10Dq+ 9B

, tan(2R) )
2x6(2B+ C)
20Dq- 2B- C

tan(2â) ) - 4x3B
20Dq- B

, tan(2δ) ) 4x3B
10Dq- B

a1
A1(t2,

1A1) ) 1

2x3
, a2

A1(t2,
1A1) ) 1

x3
a1
E(t2,

1A1) ) 1

x6
, a2

E(t2,
1A1) ) 2

x6
(AV.1)

b1
A1(t2, 1,

3T1) ) 3

2x3
cos2 θ, b2

A1(t2, 1,
3T1) ) - 1

x3
cos2 θ

b1
E(t2, 1,

3T1) ) - 3

2x6
cos2 θ, b2

E(t2, 1,
3T1) ) 1

x6
cos2 θ

b1
A1(t2, 2,

3T1) ) 3

2x3
sin2 θ, b2

A1(t2, 2,
3T1) ) - 1

x3
sin2 θ

b1
E(t2, 2,

3T1) ) - 3

2x6
sin2 θ, b2

E(t2, 2,
3T1) ) 1

x6
sin2 θ

(AV.2)

b1
A1(t2, 1,

1A1) ) 1

6x3
cos2 R, b2

A1(t2, 1,
1A1) ) 1

3x3
cos2 R

b1
E(t2, 1,

1A1) ) 1

3x6
cos2 R, b2

E(t2, 1,
1A1) ) 2

3x6
cos2 R

b1
A1(t2, 2,

1A1) ) 1

6x3
sin2 R, b2

A1(t2, 2,
1A1) ) 1

3x3
sin2 R

b1
E(t2, 2,

1A1) ) 1

3x6
sin2 R, b2

E(t2, 2,
1A1) ) 2

3x6
sin2 R

(AV.3)

b1
A1(t2, 1,

1E)) 1

3x3
cos2 â, b2

A1(t2, 1,
1E)) 2

3x3
cos2 â

b1
E(t2, 1,

1E)) 2

3x6
cos2 â, b2

E(t2, 1,
1E)) 4

3x6
cos2 â

b1
A1(t2, 2,

1E)) 1

3x3
sin2 â, b2

A1(t2, 2,
1E)) 2

3x3
sin2 â

b1
E(t2, 2,

1E)) 2

3x6
sin2 â, b2

E(t2, 2,
1E)) 4

3x6
sin2 â

(AV.4)
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S̃Γ̃ ) 1T2

Parametersa1,2
T1 (t2,1A1), a1,2

T2 (t2,1A1), b1,2
T1 (t2, µ S̃Γ̃), and

b1,2
T2 (t2, µ S̃Γ̃) appearing only forD4h topology:
ShΓh ) 1A1 (vacuum state)

S̃Γ̃ ) 3T1

S̃Γ̃ ) 1A1

S̃Γ̃ ) 1E

S̃Γ̃ ) 1T2
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