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Magnetic Exchange between Orbitally Degenerate lons: A New Development for the
Effective Hamiltonian

I. Introduction

Heisenberd, Dirac? and Van Vleck (HDVV¥ showed that
the exchange can be described by the effective Hamiltonian

expressed in terms of the ionic full spin operat&@sand
multielectron exchange parametér The last involves both
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A new approach to the problem of the kinetic exchange for orbitally degenerate ions is developed. T
constituent multielectron metal ions are assumed to be octahedrally coordinated, and strong crystal field sct
is employed, making it possible to take full advantage from the symmetry properties of the fermionic operat
and collective electronic states. In the framework of the microscopic approach, the highly anisotropic effect
Hamiltonian of the kinetic exchange is constructed in terms of spin operators and standard orbital opera
(matrices of the unit cubic irreducible tensors). As distinguished from previous considerations, the effect
Hamiltonian is derived for a most general case of the multielectron transition metal ions possessing orbitz
degenerate ground states and for arbitrary topology of the system. The overall symmetry of the syster
introduced through the restricted set of the one-electron transfer integrals implied by the symmetry conditic
All parameters of the effective Hamiltonian are expressed in terms of the relevant transfer integrals &
fundamental parameters of the two moieties, namely crystal field and Racah parameters for the metal ion
their normal, reduced, and oxidized states. The developed approach is applied to two kinds of syste
edge-sharedn) and corner-shared,) bioctahedral clusters. In the particular case bfahs fT,—2T,
problem) the energy pattern in both cases consists of several multiplets splitted by the isotropic part of excha
In both cases we have found a weak ferromagnetic splitting for several multiplets of the system. This splitti
is due to the competition of ferro- and antiferromagnetic contributions arising from the high- and low-sp
reduced states in line with Anderson’s considerations, Goodenddghamori rules, and McConnell
mechanism of ferromagnetic interaction. On the contrary, these weak ferromagnetic interaction are fount
coexist with strong ferro- and antiferromagnetic contributions in which only high-spin and low-spin excite
states are respectively involved. In addition to these unexpected results in both topologies the ferro-
antiferromagnenic contributions vanish separately for one of the level, the last being thus paramagnetic. Tt
results are in a strike contradiction with the generally accepted point of view on the ferromagnetic role
orbital degeneracy in the magnetic exchange. They also show that the simple qualitative models hax
restricted area of applications and that the peculiarities of the exchange problem in the case of orbital degene
are much more complicated. The energy pattern of the exchange levels is closely related to the topolog
the system and to the network of the one-electron transfer intercenter connections forming effective parame
of the kinetic exchange in the case of orbital degeneracy.

dipolar and quadrupolar anisotropy, antisymmetric exchange)
and also higher order isotropic terms (biquadratic exchange)
are relatively smalt®11 The situation is quite different when
the orbital moments of the constituent ions are not strongly
Ho, = 2JSS, guenched by the IQW-§ymmgtry crystal figldg so that the orb.ital
degeneracy remains in a high-symmetric ligand surrounding.
This situation is expected to occur in many extended lattices
and magnetic molecular systems. As examples we can mention

potential and kinetic exchange contributions in Anderson’s the Rd* ions in BaRu@" and (V,010)'*".** The problem of
terminology* This Hamiltonian is valid for magnetic systems ~Orbital degeneracy appears also in the compounds where two
consisting of orbitally nondegenerate ions. A vast variety of Ti®"ions are linked by three bridging ligands. One can mention
polynuclear compounds (exchange clusters), low dimensional (Et.NH2)3TizClg, 41> CsTi,Clo,'%1” and CgTiBro'® systems
systems and extended magnetic materials have been studied itvhose magnetic properties have not been interpreted consistently
the framework of the HDVV modét:1l In this case the till now. Finally, the dimeric oxo-bridged systemd{—O—
isotropic term dominates and the anisotropic contributions (like MLs]"" (M is the ¢ metal ion), considered recently in ref 19,

can be exemplified.
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Academy of Sciences of Moldova, MD-2028 Kishinev, Moldova.

In the case of orbital degeneracy the isotropic spin Hamil-
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tions) proves to be invalid even as a zeroth order approximation. relatively simple electronic configurations and topologies can
The orbital degeneracy creates highly anisotropic interactions be really considered. In the framework of the used model all
and the effective exchange Hamiltonian cannot be expressedreduced (oxidized) ionic spin levels possessing the same site
in terms of spin operators only and contains orbital operators spin were assumed to have equal energies. Therefore, this
as well. simplified model did not take into account the complex energy
Two main trends in derivation of these kinds of Hamiltonians spectrum of transition metal ions described by the Tanabe and
may be noticed, namely, semiempiric and microscopic. In the Sugano diagram®. A formally similar model with a different
semiempirical theory the general form of the Hamiltonian may mathematical procedure has been developed in ref 39.
be found applying only point symmetry and time reversal  The present paper is an attempt to develop a new efficient
arguments in constructing a general invariant operator involving approach to the problem of kinetic exchange between orbitally
also interaction of the system with the external (magnetic and degenerate multielectron ions. We will use the important idea
electric) fields?°~22 This semiempirical approach deals with of ref 29 of factorization of the full secondary quantized
large numbers of independent (from the symmetry point of view) Hamiltonian. However, as distinguished from ref 29, we start
parameters so that the application of the theory to a real materialwith the strong crystal field scheme (with the subsequent
cannot be always meaningful. allowance of mixing of all configurations). This makes possible
The microscopic theory of the exchange interaction between the use of symmetry properties of the fermionic operators ref
orbitally degenerate ions has been developed by several40 and collective electronic states to the full extent. We will
authors??-32 The idea that different orbital states have different show that taking full advantage of the symmetry one can
exchange parameters was proposed by Van \Agend the construct the effective Hamiltonian involving spin operators and
theory of the potential exchange was worked out by L&vy. standard orbital operators (matrices of the unit cubic irreducible
Effective potential exchange Hamiltonian for orbitally degenerate tensors). At the same time, the developed approach allows us
ions in a strong cubic crystal field scheme is given in refs 31 to take into account carefully all important CT states using the
and 32. fundamental parameters of the constituent moieties, namely, the
In most cases the kinetic exchange arising from the partial set of relevant crystal field and Racah parameters. In this sense
electron delocalization into the excited charge transfer (CT) the developed approach is expected to provide the possibility
states is the dominant contribution to the overall exchange to rationalize the properties of real systems in terms of relevant
parameter. According to the Anderson’s conéegitd Good- crystal field parameters determined independently for the
enough-Kanamori rules? three different cases should be dis- constituent magnetic sites (for example, from spectroscopic
tinguished: (1) intercenter electron transfer between the half- data). The second important advantage of the developed
occupied orbitals giving rise to the antiferromagnetic exchange, approach is that the effective Hamiltonian retains its general
(2) transfer from the half-occupied orbital to the empty orbital, form for a definite ground term of each individual site,
and (3) transfer from the double occupied orbitals to the half- independently of both the overall symmetry of the cluster and
filled orbital. In the last two cases, delocalization results in a the internal structure of the ground states. The overall symmetry
relatively weak ferromagnetic interaction arising from the requirements are introduced through the set of relevant electron
competition of ferro- and antiferromagnetic contributions to the transfer pathways; meanwhile, the internal structure of the
overall exchange. The order of the resulting kinetic exchange multielectron states of'dions and CT states determines the

parameter can be estimated as effective parameters of the general Hamiltonian. From this point
of view it can be said that the suggested effective Hamiltonian
2 2 o2 t provides the same level of generality in the problem of exchange

U—J. U+J ~ U interactions betwgen prbitally degenerate ions as .the conven-
0 0 0 tional HDVV Hamiltonian for the nondegenerate spin systems.

. . . , , The results obtained for two symmetriBs;, (edge-shared
wheret is the intercenter transfer integral,is the intracenter octahedra) and,n (cormer-shared octahedra) shows that the
Coulomb repulsion energy, arld is the intracenter exchange  gnergy pattern is much more complicated than that obtained in
of the mobile electron with the spin core; consequerlily;- the previous simple models. Finally, in view of the results

Jo andU + Jo are the energies of the high-spin and low-spin - gyained in the framework of developed multielectron approach,
CT terms. Similar |d§2§ were proposed by McCoriflelhd \ye giscuss the applicability of the qualitative results of
gataerr]dbé?B)reslow et al>36 (for review and discussion see refs Anderson’s model and Goodenougkianamori rules.

The above conplusions were drawrj out in the framework of |, perivation of Effective Hamiltonian for Kinetic
one-electron (orbital) model. For orbitally degenerate systems Exchange
the three mentioned cases should be adapted to account for the
multielectronic terms of the interacting ions. In fact, only if Let us consider a polynuclear system containing identical
all orbitals are half-filled (case 1) we deal with orbital singlets paramagnetic ions. The ground states of all constituent ions
and then the HDVV Hamiltonian is applicable. In the other are assumed to be orbitally degenerate and we denote them a
two cases we have empty (or double-occupied) orbitals pos- |Sgl igMigryigrll) Where Sy is the ground state spin dth ion
sessing the same energy as that of other half-filled orbitals. and Mig, is the spin projection['ig stands for the irreducible
Under this condition the HDVV spin Hamiltonian requires representation of th@p-group, andyig enumerates its basis
essential modifications. functions.

The complete Hamiltonian for the kinetic exchange between We are dealing with the transition metal ions in the cubic
two orbitally degenerate ions was proposed by Drillon and environments, thus the one-electron basis states in the strong
Georgeg€?3° These authors assumed a weak crystal field crystal field will be t and e, the corresponding orbitals we
scheme expressing the generalized Hamiltonian in terms of denote agr,, (I'i = t2, €, andy; enumerate the basis functions).
orbital angular momentum and spin operators. However, this Kinetic exchange appears in the second order of perturbation
computational procedure proved to be cumbersome so that onlyprocedure with the unperturbed Hamiltonikig including all
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intracenter interactions and the intercenter one-electron transfereturned to the ground manifold after the two transfer processes

operatorV playing the role of perturbation. This operator can
be represented as a sum of the following two-center contribu-

tions:
V(i) = Z Z(Vriyilrjl’j + Veri'riV\)
iVi 1jYj

Here Vr,,r;;, describes the transfer of the electron from the
orbital ¢ry, of thejth center to the orbitapr,, of theith center:

Vl"iy‘,l"jyj = t(riyi!rjyj) anyiocijja (2)

1)

where CFW(CFW) creates (annihilates) the electron at the
orbital ¢y, with spin projections (o = 1 or ¥); t(Tjy;,[iyi) is
the associated transfer integral. The oper#ftgy, r,,; describes
the inverse transfer process.

OperatorV(i,j) mixes the ground electronic configuration of
the pair of ions i — d with the excited charge transfer
configurations it — d™* and ¢** — d"*. Let|i, vSTMyO
be the oxidized states of ion correspondlng to the ”Ell
configuration and|i, uSTMyOare the reduced states”(a
configuration). Symbols’ andu are used to enumerate the
repeating>™I" and25*1]" terms, respectively. The excited CT

involved in the second order perturbation procedure.

This Hamiltonian is quite similar to that proposed by Georges
and Drillon!! The main advantage of such-type Hamiltonian
is that it is expressed in terms of one-site operators. Now we
can pass from the second quantization representation of the
exchange Hamiltonian to the effective Hamiltonian involving
standard orbital operators and spin operators. The most
efficient way of doing that is to take into account symmetry
arguments. First, the creation and annihilation operators behave
as an irreducible tensor operator of the rotation group of the
rank Y, acting in the spin space. Second, the fermionic

Crgo and Cry,, and the corresponding operatbrI/2” and
T” ¢ are transformed in the space of electronic coordinates

I|ke 'the irreducible tensors of the type Bfyi under the action
of point symmetry operations.

Applying this two important points and the WigneEckart
theorem* we can obtain a general expression for the effective
Hamiltonian in function of unit operatdy, ionic spin operators
S and orbital irreducible tenso®y,. The details of the
derivation is given in Appendix I. This Hamiltonian is of the

X T IJV}, [Fa e X

H
1<) ]

states can be taken as the products of the states of individual [y’ Iy, JVJED'ry Ojry[Urr(F.Vu LDy 1

ions, namely i, vSTMy(Jj, STMyOfor ' — d'™* configura-

tion and|i, vSTMy0jvSTMyOfor d™™* — d™* configuration.

‘]FF(FJ/H ]J/]’ |V|’ jVJ) SS] (5)

These states can be regarded as the excned eigenstates ofhere Jrr(Liyi,Ljy; LiyiLiy)) is an exchange parameter be-

unperturbed Hamiltoniakly (the eigenstates dfi, belonging

to the ground manifold an&gd igMigry igl1Sgd jgMigryjgrl). Using
these notations we can introduce the following effective second-
order Hamiltonian for thé-pair which is operative within the

ground manifold:
Y [e,(S0) +

Heid) = — Z Z
- riJZiTJ’ w%’y{ Vit
e,u(sr)]*g;[vr,y,,riyﬁ, UM,
’VSFM]/D[E uSCMP| 0, VSFM}/|V1-yI FV,

li, vSTMPLj, u STMyOx
3, vET W7, 6 SV ] (3)

.V.FV

wheree,(SI) is the energy ofrth 2SH1-term of the @~2-ion
ande,(SI) is the energy ofuth +1T-term for d*-ion. The
energy of the ground term of thé-tbn has been set as the
origin of energy. Sinceth andjth ions are assumed to be
identical, these energies do not depend on the nunilzardj.
Following the idea of ref 29 one can represent the two-site
operator 3 in terms of the products of one-site operators:

Holi) =5 5 3 3 S+

vu
Gﬂ(Sr)] lt(FiVi' jVj)t(erjaFiVi')g;Z X
Y My o
li, v SCMp(04, v STM|Cr- ,,,Cr lj, uSTMP D
0 uSTMF|CE .y + Cryli, v STMPOx

[}, v STMy|C li, u SCTMPO, uSTMFICE, ] (4)

+
[C Tiyio Fyo

Fiyo Liyjo’

In eq 4 we have taken into account that=I'{ (both are 1 or e)
andI; = I§. Due to this condition, the system is apparently

tween the four orbitals involved in the electron transfers (one
electron is transferred fromjy; to Tjy;, and the other from
Iyj to Iy)) andI" andI" denote the irreducible representa-
tions coming from the direct produci3 x It = 3T, I x T
=3I Urr(Tiyi, Iy, LiyiLyj) is an additional spin-indepen-
dent parameter that accompany the exchange parameter. Thi
parameter is also present in the HDVV Hamiltonian but is
omitted because only shifts all energies in a constant. These
effective parameters are defined as follows:

l"l"(r|y|1 ]j/],r|’)/|, ]VJ) t(rlyl’ JVJ) t(FJy], |V|) X
22 3 [6,(81) + €,(S)] ay (I, vSDby (I, 1 S +

al (T}, vEDBE (L, 1 0]

Jr,r'(riVinVjaFiVi'verj') =
—tCylyyy) (L) Z Z > [e,(SD) +

€, (801 ap(I, vSDB (T, usr) +
a, (I, vSD)by (T, 1 D)) (6)

where thea- and b-parameters are defined in Appendix | (eq
Al.8) and evaluated in Appendix Il. The parameters of eqs 6
are expressed in terms of transfer parameters and energies o
the different electronic terms involved in the transfers. @&he
andb-parameters, as it is possible to see in Appendix I, depend
on the mixing between the different terms, so depend on the
single-ion crystal field and the Racah parameters of the
individual ions.

The Hamiltonian in eq 5 does not contain any restrictions on
the symmetry of the whole system while the constituent moieties
are supposed to have a high symmetry (octahedral). The
symmetry of the binuclear unit may be introduced implying
specific conditions for the transfer parametéssconnecting
magnetic orbitals of the interacting ions. This Hamiltonian
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Eu, and EV8 and hence the Hamiltonian can be expressed in
terms of the direct products of the orbital operat@‘,;s Ok,

O'EV, and scalar product of spin operators. After simple
calculations, we arrive at the following Hamiltonian:

Hei) = —[(“/SUEE@) + Ugg(V))Og, Ok, +

(iUA () + Uy E<v))<O‘A1 Ok, + Ok, oiAl)] lil; =

(13 p,(0) + Iap (V)0 Oh +

(432 + 920)0, O, +

(2223, 40 + 3,40)(0}, O, + 0L, O] ss @)

In egs 7 the short notation®eg(t28)i(t20)i(t20)i(t20)i] =
Uee(8), etc., are used.

The Hamiltonian of eq 7 is apparently invariant under
symmetry transformations dd,, point group as well as with
respect to the time reversal operation. From this point of view

¢ this Hamiltonian is formally similar to the effective Hamiltonian
that can be derived on the basis of symmetry arguments only.
'|I'h|s last is overparametrized since it contains additional
|nvar|ant products 0Or, operators, for exampl®r,,Or,, which

are odd under time reversions. Each one of these invariant
forms is related to an independent (semiempiric) parameter. For
D2n symmetry, the number of additional parameters of this kind
is equal to 19.

As distinguished from the effective Hamiltonian, derived in
the semiempiric way, the Hamiltonian of eq 7 is based on the
microscopic theory of kinetic exchange, and therefore it is
obtained from the first principles. The main advantage of the
microscopic consideration is that it leads to the relationships
between the parameters involved in the effective Hamiltonian
and reduces considerably the number of the independent
parameters. In fact, th&r~ and Jr parameters are not
independent (they only depend on two transfer integraisd

In this Section we illustrate the developed formalism con- t'). Moreover, under some realistic physical assumptions about
sidering the particular case of edge-shared bioctahedral clustetthe transfer integrals some parameters (along with the allowed
of Don symmetry (Figure 1). We will use the conventional operator invariants) do not appear in the Hamiltonian.

Figure 1. Two main kinds of &d overlap in the edge-shared
bioctahedral cluster: (&J—¢ overlap, (b) v-v overlap.

involves two different parts: one spin independent part as direc
product of orbital matrices and unit matrrca‘r Ory, lil;,
and a second spin dependent part as a product of these orbit
matrices and the sprn matrrcé)ir O SS WhenT',I" =

A1 the direct producOr O‘F " represents the unit matrix and
this Hamiltonian becomes the well-known HDVV Hamiltonian.
Only whenI',I'" = A; we obtain highly anisotropic contributions
which is inherent to the exchange problem of the orbital
degeneracy. The relative importance of the different contribu-
tions governing the magnetic properties may be derived for each
particular case o&gligr, Sgljgr terms and the overall symmetry

of the binuclear system. Selected examples will be considered
in the following Sections.

lll. Kinetic Exchange in Edge-Shared Bioctahedral O2n)
Dimer

strong crystal field basis for one-electron orbitals The Hamiltonian of eq 7 is valid for all kinds of grousgLigr
terms of the constituent ions but the dependenctgf and
Eryz npryxz, CRXY (ty Jrr parameters on the transfer integrals is specific for each
ground ionic state. We will focus on the orbital tripldtg, =
~ 32— 12 va V308 — Y : :
u~ 37 —r% v \/5( ) (e) T, or T1. In this case the operato@ry are represented by the

matrices given in Appendix Ill.

The Hamiltonian of eq 7 contains only diagonal orbital
matrices and hence it can be diagonalized in the spin coupled
representation:

In order to adapt the general Hamiltonian of eq 5 to this
topology, we should imply thB,, symmetry conditions on the
set of transfer integrals. As one can see only two kinds of
orbitals overlap in an effective manner, namety orbitals
(Figure la) and v-orbitals (Figure 1b). The corresponding

transfer integrals will be denoted &5/h|&iC= t, Bj|h| viC=t'. 1SgLigrVignSgd ig¥igr SM[|=S
The & < ¢ transfer can be considered as the direct process, % CSZMrgr%ng,grlanglgr' SeMig (8)
meanwhile the transfer involving e-orbitals; (# v;) occurs MigMigr

through the ligands. For the sake of simplicity we will take
into consideration only these two sigma pathways neglecting Now one can easily obtain the eigenfunctions of the Hamiltonian
much less efficient allowed pathways, involvigg #, and u of eq 7. The energy pattern consists of two groups of
orbitals. accidentally four-fold degenerate levels and one nondegenerate
Under these conditions only the terms witty; = Tiyf = level. The energies of théS™I'y terms of the dimer are
28, Tjy; = Tjyj = € andTy; = Tiyi = ev, Tjy; = Tjy] = ev summarized in Table 1. The parametlisandJ (k = 1, 2,
prove to be nonvanishing in the Hamiltonian of eq 5. For the and 3) as a function dfr~ andJr parameters are summarized
nonzero ClebschGordan coefficients in eq 3.y, I'y" are A, in Table 2.
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TABLE 1: Energies of the ™Iy Terms of an Edge-Shared 1

+ +,1 2- _
Dimer with Symmetry D2 CalOl= Cyl A= [To Mg, = Q’CD
terms energy
2STIA 2SR, 2SHB, Ui — H[S(S+ 1) — 2S,(Syr + 1)] one finds that
AP B By " By Uz — JISSH 1) — 25(Sy + 1))
Ag Us — J[S(S+ 1) — 25(Syr + 1)] ﬁT2| |T%/22| |1A1D= ﬁTZ, My, = 1/2,C|C§|1A1D= 1
aS is the total spin of dimerI'y stands for the irreducible
representations dD,, group. For two identical ion§g = Sgr = Sy L . . .
andS=0, 1, ..., B. Substituting this reduced matrix element into eq All.5 we
can calculate any matrix element of one-site operator corre-
EABLE 2't:h gk and th %arameters for the Edge-Shared sponding to the vacuum state. Particularly, we get
imer wi ymmetry Do,
1 +~/1 2 1
parzmeter l — l ﬁTz, Mg = 15, EICAG(ADCxl T, Mg, = /,, 0= 1
! ~15Uee(8) + 5 Un e(0) = iUeelv) + Up V) 9)
2 . .
U2 “IUeel©) —%UAlE(C) + Y Ueelv) = YUp (V) On the other hand, upon applying eq All.1 the same matrix
Us 4 42 element can be represented as
—13Uee(0) — TUA@(C) = Ugg(v) — 2U, (V)
J V2 1 1 2
' YaIa,a,(6) + Tedeel©) — RO 1/ZJAlAil(v) + fgaq\l(tz,lAl) + z—ﬁ)a’z*l(tz,lAl) + \—FGaE(tz,lAl) +
TeJeelv) — /ZJAIE(V) 1
B a0~ YD) + L 0 + oy p () —=a5(t,'A) (10)
2 1y Jee(v) + 1 aIae(V) Ve
3 1/3‘]A1A1(C) +2,0.0) + y 30,£0) +1/2‘]A1A1(V) + Combining eqs 9 and 10 we obtain one equation co_ntalnlng
Y Y3 four unknowna-parameters. The remaining three equations can
2ee(V) T Ja V) be obtained in a similar way from other matrix elements.

Solving this system of equations we find the four a parameters.
They are given in Appendix V (eq AV.1).

Inspection of Table 1 shows that the energy spectrum for In order to find theb-parameters the matrix elements of the
Dan pair of S Tigr ions is formed by two accidentally degenerate one-site operator related to the redugesl” states (é config-
electronic levels comprising four terms each and one nonde- uration) should be considered (egs All.2 and All.6). Let us
generate level. The levels are splitted by the isotropic exchangefocus, for instance, on the spin-triplet reduced state’T;[]
interactions according to the Lande’s rule. This result is general The last includes the contribution df ¢onfiguration which is
for aDa, pair of transition metal ions possessing orbital ground represented by the only Slater determin&nt:
state triplets and arbitrarg,. The parameterb) and Jx can
be expressed in terms of the relevant crystal field parameters |(t§)3T1, M =1, f0= —|&E| (11)

Dg and Racah parametefs B, and C defining the energy

spectrum of the constituent moieties in their ground, oxidized, whereé are ¢ are % spin orbitals with spin projections = 1.
and reduced configurations. This task can be solved for eachThe creation operator acting on the ground state gives:
particular ionic dSglIigr State.

We will illustrate the developed approach taking as an C§|2T2, Mgrzl',gD: —|&E] (12)
example a simple case of(ész) — djl(ZTz) pair for which all 2
d’>—d° CT states can be found analytically. These charge - .
transfer states represent the productsyof th)(/a oxidized vacugumComblnlng eqs 11 and 12 and Appendix II, we get
state (d configuration) denoted b= |*A;[and reduced states
involving all crystal field SI' states of @ configuration EL,3T1,I\7I =1,ﬁ|C§|2T2,Mgr=%, E=cosH  (13)
CTi(G1e), EG,), AL, and Tyt ke)). The wave

functions for the repeatingl’ states are given in Appendix IV. Substituting the result into eq A2.4 we obtain for the reduced

Due to the fact that in the ground state onjyshell is matrix element
populated v<> v transfer process is not relevant and the
corresponding parametddgg(V), Ua,e(V), Jaa,(V), Jee(V), and EL,3T1||T%2||2T2D= —3J2 cosd (14)

Jae(v) vanish. The remaining parametege(5), Ua,e(8),
Jaa(8), Jee(8), and Ja,e(8) can be found by means of the
calculation of the sets - and b-parameters with the use of
the procedure described in Appendix Il. The application of this
procedure requires the knowledge of the reduced matrix
elements of the fermionic operators involved in egs All.5 and
All.6 which can be easily obtained using egs All.3 and All.4
and explicit expressions for the wave functions. Considering, Substituting the reduced matrix element of eq 14 into eq All.6
for example, the oxidized (vacuum) state and taking into accountone can find all matrix elements of the one-site operator
eq All.3 and relation Ca G(l, 3Ty) C‘g. For example, we have

For the second reducéd; state the analogous calculation leads
to the following result:

2T, TH21T,0= —3V2 sin6 (15)
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1 = 1
BT, My, = >£1C4 G(1, T) CHIPT, My, = S&0= cos 0

1 ~
BT My, = = 5.&ICy1 G(L, °Ty) C3l*Tp, My =

1 1
§,§D= 5 COS2 0

1 ~ 1
BT, My, = 5E1C4 G(1, T) CLlP T My, = >E0=0

1

2,§D= 0

(16)
The matrix elements of the operat@; G(Z, 3Ty) Cg
related to the second reduced statélaftype are obtained from

1 ~
BT, My = = 5.81C; G(L,°Ty) C3l°To Mg, = —

the corresponding matrix elements of eq 16 by means of the

change cds0 — sir? 0. Expressing the same matrix elements
through the parameters (t,, x 3T1) and B(tz, u 3T1) (u = 1

J. Phys. Chem. A, Vol. 102, No. 1, 199805

a result, the singlet level of this group is strongly stabilized
and becomes the ground state of the system. Finally, for group
[l we observe no exchange splitting:(= 0), so this group
represent a paramagnetic mixture of singlet and triplet states.
It should be stressed that the ferromagnetic effect in group |
arising from two competing interactions is much weaker than
the antiferromagnetic interaction in the group Il where only spin
singlets contribute and therefore the ground state of the system
is antiferromagnetic. In spite of the fact that the exchange
splitting in each group of levels can be described by the Lande’s
rule, the general pattern is much more complicated compara-
tively to the simple Heisenberg scheme due to the interpenetra-
tion of several groups of levels.

IV. Kinetic Exchange in Corner-Shared Bioctahedral
(D4pn) Cluster

Now we will consider briefly the corner-shared bioctahedral
system oD4, symmetry. In this case it is reasonable to neglect

and 2) according to eq All.2 and solving the systems of linear all transfer integrals with the exception & |h|&C= ;|h|y0

equations obtained in this way one gets thgparameters
associated to théT; state (see Appendix V eq AV.2). The
b-parameters associated to the reduced sidtes'E, T, can
be calculated in a similar way. They are given by egs AV.3
AV.5.

Substitutinga- and b-parameters into the definitions of egs
6 we find the U and Jrr parameters of the effective
Hamiltonian expressed in terms of the transfer integyréq
parameter and Racah parameters &foth. These are sum-
marized in Table 3.

For the sake of simplicity, the difference between the orbital

t; energies ind! and d-ions is neglected. That is why the

excitation energies in Table 3 are roughly associated with the

energies of:S" terms of d-ion in cubic crystal field. It should

be stressed that all these energies must be supplemented by an

additive contribution equal to the Racah paramétdganalog
to the Coulomb energy in Anderson’s theory).
Finally, introducing theUrr and Jrr parameters (Table 3)

into the formulas of Table 2 we arrive at the final expressions

for Ux andJi (Table 4) defining the energies for tR€, — 2T,
edge-shared pair.

In Figure 2, we have plotted the energy pattern for this kind
of exchange-coupled systems. As parameters we have used the

Racah parameters calculated for freé*Tion in ref 42: A =
141 000 cm?, B = 900 cn1?, C = 3300 cn1! (these values
are close to those found in octahedral crystal f8ldThe cubic
field splitting parameter Dq is taken to be Bg 1000 cnrt
that is typical for divalent metal ior®S. The transfer parameter
is taken to bet = 4000 cnt? (this is within the Anderson’s
estimatior). The spin-independent part of the effective Hamil-

= t and [|hjuO= t' that involves efficiently overlapping
orbitals (Figure 3a,b). Implying these conditions on the
Hamiltonian of eq 5 we obtain after some rearrangements:

Hedi) = —(%[UEE@ + Ugeln)] +UEE(u))oiEu Ok, -

[Uge(®) + Uge(n)] O, OF, + (?[uAlE@) +Up el +

UAla(W)(OiAl Of, + Ok, O4) = 2Urr, (0O,

o, -
ZUTsz(‘E”)OiTZC OJTZCI il + [_(é[JAlAI@) + ‘]AlAl(n)] +
JAlAl(u))o‘Al O, ~ (%[JEE@) + Jeel)] +

Jee(U) |0k, O, — [Jee(&) + Jee(n)1Og, Ok, +

(%Z[JAlE(fS-) + JAlE(n)] + ‘]AlE (u))(oiAl OjEu T

Ok, Oh)23r,r (6n)Ok, OF, — 231 (En)Ok; O"ng]s&
(17)

where the short notationsUrr[(t28)i(tE)i(tn)i(tan)] =
Urr[(t2n)i(tzm);(t28)i(t26);] = Urr(n), etc., are used.

As distinguished from the Hamiltonian of eq 7 related to the
bioctahedral edge-shared cluster the Hamiltonian of eq 17 proves
to be nondiagonal in the basis (eq 8) due to the terms containing
bilinear operator form®; 0% , andOx ;0% . The diagonal-

tonian splits the nine orbital states of the pair in three sets of ization can be easily performed using symmetry adapted basis,
levels. The accidentally degenerate group of levels | comprising the results are summarized in Table 5 in function ofthend

the orbital states 4 Bsy, B1g, and By proves to be the ground
one. The first excited level Il is the nondegenerate Ahe

Jx parameters given in Table 6. While deriving Table 6 we
took into account thalrr(;7) = Urr(&) andJrr () = Jrr (&)

highest excited group of levels Il comprises the orbital states due to the equivalence of two kinds of electron trangfer &

2Ag, B3g, and &u.

Let us focus now on the effect of the spin-dependent part of

the Hamiltonian. Table 4 allows to make an important

andn < 7.
Table 5 shows that the energy pattern of bioctaheBral
cluster with the ground orbital triplets of constituent ions

conclusion concerning the general feature of the exchangeincludes six levels split by the isotropic exchange. Five of them
splittings in the system under consideration. The degeneraterepresent the orbital singlets and one is accidentally degenerate

levels in group | splits under the influence of a weak ferro-
magnetic contributionk > 0) coming from the mixture of these
dimer terms with the excited spin singléfl3 and the spin triplet
28T terms of the 8 configuration. For group Il we observe a
strong antiferromagnetic splitting{~ —210 cnt?) since only
spin singlet states contribute to this parametéA(22'E). As

comprising two orbital doublets gkand E).

Now we will consider again the particular case?dt—2T,
pair. In this case the & u transfer does not participate in the
second order process and hence the paramdteggu),
Ua,e(u), Iasa,(U), Jeg(u), andda,e(u) should be omitted in Table
6.
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TABLE 3: Uy and Jpp Parameters for 2T,—2T, Edge-Shared Dimef

26(T)  26CT)  9(A)  9('A)  9e('E) 9e('E) 6ey('T)  6ey('T)
Une(@) @[_cofo . sifo . coda . sifa | 2coép | 2sifp cofo . sifo
a26,CT)  AV26T)  W2e,('A)  W26('A)  IWV26,(E) WV2e,('E) 12v2¢,(T,)  12v2¢,(*T))

Uee(6) tz’_ coff  sifh | cofa " sir? o +Zco§[3+23ir12ﬁ_ codd sinzé]

Inai(©) _tzl_ 2cod 9 2sirfd | 2coda n 2sirf o +4co§ﬂ+4sin2ﬁ+ 2cod 6 n 2sirf o
36,(TY) 3e(T)  9%(A)  96(A) 9 (E) 9% (E) 36,(T) 3¢y
Jee(©) _t2'200§6 2sif§ | 4codo |, 4sifa +8co§ﬁ+83ir12,3_ 2co$o  2sirf o
36,°T) 36T 96('A)  96('A) 9%, ('E) 9,('E) 3ey('T)  3e('Ty)
Jne(@) _tzl_ codf  sinte n 4c0g a . 4sirf o n 8cod S n 8sirf n cog o n si’ o
3W26,(T)  3V2e(CT) V26, ('A)  V26,('A)  V26,('E) IV2e('E)  3V2e,(*T,)  3v26('T))

a2 The energies (withoud) can be taken directly from the TanabBugano diagrams (the matrices for the repeated terms are given in ref 38, |
294). The mixing coefficients (defined hy, 5, 6, andd angles) are given in Appendix II.

TABLE 4: Uy and Jx Parameters for 2T,—2T, Edge-Shared Dimer Expressed in Function of Transfer Parameter and Energies

Us tZ.CO§9 n sir’ 0 n cofa N sir’ o +200§[3+25ir12ﬂ+ cod o n si’ 6
36,°T)  36(°T)  27e,('A)  27e('A)  276,('E)  27e('E)  9e,('T,)  9e,('T,)

U, - Scodf _ 5sifo . cofa  _sifo |, 2cofp | 2sifp  5cogo _ Ssirfd

126,°T)  126,C°T)  27e('A)  27e(‘A)  276,(‘E)  27,('E) 36¢,('T)  36¢,('T,)

Us tz'co§6 ,.sif6 _ 8coda _ 8sifa _16co$f 16siff  codo  sin’d
351(31—1) 352(31—1) 2751(1A1) 2752(1A1) 2751(1E) 2752(1E) 951(11—2) 962(11—2)

N} 0

5 tfcod 6 . sifg codo st
2_51(3T1) 62(31—]) 61(11—2) Ez(sz)

Js s c0§0L+ sif o +2co§ﬂ+25inzﬁ
3lafA)  eA)  e(E)  &(E)

In addition to thea-, andb-parameters already calculated (eqs edge-shared dimebg topology) is shown in Figure 4. In this
AV.1-AV.5) some new kinds of these parameters appear for case the spin-independent part of the Hamiltonian leads to a
the D4, topology. The results for them are given in the splitting of the dimer terms in six levels. These are further
Appendix V (egs AV.6-AV.10). Substitutinga- and b- splitted under the action of spin-dependent part of the Hamil-
parameters into Table 6 we expréssandJc parameters through  tonian in such a way that several termsBpy, 13Big, 13A19)
the transfer integral and the set of the ionic energy spectrum splitin a antiferromagnetic fashiod,( J,, J4 < 0), others {3,
parameters. The results are in Table 7. 1'3Eg, 137, in a ferromagnetic onel{, Js > 0), and the term

The energy pattern fofT,—2T, corner-shared pairDy, L3A14do not split §s = 0). The ferromagnetic parametgyis
topology) calculated for the same set of parameters as in thethe largest onel§ ~ 235 cnt?) due to the fact thal; does not

contain competitive antiferromagnetic terms (Table 7). Thus,

E (em) the term3Ay, proves to be the ground one and the dimer is
Dy et Big Ay By SAg 1A By, 1A, 1By, 4 expected to be ferromagnetic. The next excited I&vg], 13,
, | (accidentally degenerate) exhibits a weak ferromagnetic splitting
7 (Js &~ 5 cn1) due to the competition of ferromagnetic (coming
D3 13A, s AuBu'Bi By | from 28T, terms in CT spectrum) and antiferromagnetic (coming
Dy=—————t T g T from 21T, terms) contributions. The next term$B,,, 1B,

13A, 13B3, 13B, 13B \ 3 3 E . A
e TR 3AuB3u B *Bayg 1374 are very close in energy and the corresponding exchange

\ ) interactions are strongly antiferromagnetle® J, ~ Jy~ —216

\ 3 Lo cm~1) due to the contribution of different low-spin excited states.
( It is remarkable that all spin triplets arising from antiferromag-

netically split levels coincide with the nonsplittédA 4 level.

V. Concluding Remarks

— ¥ 1y In this paper we have presented a new approach to the

a b problem of kinetic exchange for orbitally degenerate ions. The
Figure 2. Energy pattern of the edge-shared bioctaheda))(cluster constituent metal ions are supposed to be octahedrally coordi-
consisting of one-electron ions: (a) spin-independent splitting, (b) spin- Nated (although the general expressions do not restrict in this
dependent splitting. point), and strong crystal field scheme is employed. The highly
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i The overall symmetry of the system is implied by the
o restricted set of the transfer parameters. The suggested approac

can be applied not only to the ground states of interacting ions
but also to their excited states. This could be useful, for
example, in the problem of optical spectroscopy of this type of
exchange dimer.

In order to illustrate the mathematical procedure and some
consequences of the exchange in the case of orbital degenerac
we have considered two cases: edge-shabeg) @nd corner-
shared D4) octahedral dimers. For both cases the effective
Hamiltonian was derived for arbitrai§y 'y terms. As distin-
guished from the general (semiempirical) Hamiltonian, based
on the point symmetry and time reversal arguments, the
Hamiltonian derived in the framework of microscopic approach
proves to be much more simple. In fact, the number of
parameters entering in the last Hamiltonian is much less,
moreover all these parameters are not independent and are
expressed in terms of two transfer integrals.

In particular case of'dions €T, ground terms) we have found
unexpected features of the exchange splitting contradicting the
conventional points of view on the role of degeneracy. In both
cases D, and D4n) we found a weak ferromagnetic splitting
for several multiplets of the system. The exchange parameter
for these multiplets is formed by competitive ferro- and
antiferromagnetic contributions arising from high- and low-spin
reduced states. This result is in compliance with Anderson’s
definition of third-order effectJperno & (t3/U)(t/Jo)) and Good-
enough-Kanamori rules. At the same time, in the edge-shared
system strong antiferromagnetic interaction (coming from low-
spin excited terms, only) was found for a group of multiplets
giving rise to an antiferromagnetic ground state for the dimer.
In the corner-shared system we have found one strong ferro-
magnetic interaction (coming from high-spin states only and

Figure 3. Three main kinds of ¢d overlap in the corner-shared
bioctahedral cluster: (&)—& overlap, (byy—# overlap, (c) u-u overlap.

TABLE 5: Energies of the 27Ty Terms of an giving rise to a ferromagnetic ground state of the dimer), and
Corner-Shared Dimer with Symmetry Dgp® two strong antiferromagnetic interaction (arising from low-spin
terms energy excited states). These conclusions show that McConell mech-
2SHIA L U — J[SS+ 1) — 2S4Sy + 1)] anism of ferromagnetic interaction for orbitally degenerate
B Uz — LSS+ 1) = 25(Sy + 1)) subunits can be invalid under some conditions. The results show
BHIA Us — B[S+ 1) — 2S(Syr + 1)] also that the simple qualitative models have a restricted area of
zssi iBzu2S+1 Us = J[S(S+ 1) — 25(Sy + 1)] application for the high-symmetric exchange system possessing
zsﬂll,i“' & 85 B 35[5(S+ 1) = 25(S+ 1)) orbital degeneracy.
1 6~ J[S(S+ 1) — 25(Sy + 1)]

) ] ) ] ] In this article we have not considered the third actual topology
°S is the total spin of dimerl'y stands for the irreducible  of the dimer, namely, face-shared dimer. We are aimed to
;i%ressinct)atllons dzi)g\ group. For two identical ionS§gr = Sgr = Sy consider this problem elsewere with particular emphasis on the
T magnetic data concerning plg]3~ dimers and the contradic-
tory theoretical conclusions of refs 30 and 39. The other
problem we are going to address to is the exchange interaction
between orbitally degenerate iongFand Cé". Many clusters
of this kind are known that requires the development of a
rigorous exchange model taking into account the orbital
momentum contributions. Notice in particular the series of high-

anisotropic effective Hamiltonian of the kinetic exchange is
expressed in terms of standard matrices of the unit irreducible
cubic tensors acting in the space of orbital functions and spin
operators. Starting from the definite ground ter&d’y, of
building blocks (octahedral subunits), we construct the most

general form of_ the effective Hamilton_ian containing orbital symmetrical M clusters embedded in polyoxometalate frame-
operatorsOry (with I'el'yr x I'y) and spin .ope.rators. works of the type [M(H20)2(PWyO34)2]1% recently character-
The parameters of the exchange Hamiltonian are expressedzeq by us from magnetic susceptibility and inelastic neutron
in terms of the fundamental parameters of the monomeric scattering spectroscopy (see review article ref 43 and references
subunits and a set of one-electron transfer parameters. Theherein). Finally, it should be noted that in our consideration
problem of eigenstates and spin vectors for each octahedral siteye were intended mainly to derive the effective Hamiltonian
is supposed to be solved with due accuracy. In the framework for the kinetic exchange and to illustrate the mathematical
of crystal field theory we are dealing with the cubic field procedure. For this reason we have neglected-spibital
splitting and Racah parameters that can be determined inde-interaction that can be important for orbital triplets and should
pendently, for instance, from spectroscopic data. The effectsbe taken into account in discussion of experimental data along
of covalency can be also included in the evaluation of the with low symmetry crystal fields. From the computational point
effective Hamiltonian parameters if the corresponding data about of view these problems dealing with one-center interactions do
the internal structure of monomeric subunits are available. not present difficulties and will be considered in the next future.
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TABLE 6: Uy and J¢x Parameters for the Corner-Shared Dimer with Symmetry Dy,

Uy ~%1xUgel) — SiﬁuAlE@) + Upr (&) + Upr (81) = YUgelt) — Up (W)

U ~13Ugel&) — f Un (&) = Ur,r,(6n) — Ur 1 (&n) — Y,Uge(U) — Up ()

Us 1Ueel8) — . f Un,e(8) = U, (n) + Ur 1 (&n) — YUge() — Uy (1)

U IUeelE) SifzuAlE(&) + Upr (81) = Upr (8n) — Y Ugelt) — Up (W)

Us Ueel®) +3—j§uAlE(§) + 5, Ueelt) + YU W)

Us —IUgel&) + qulE(s) UgeU) + 2U, g(u)

J HgIap () + “ledeel) + fJAlE(E) U (Em) = e r (&) + I a () + Yedeelu) + Yod glu)
L oI p (8) + *IJeel®) + ifZJAIE(s) + Ur 1 (En) + Yodrz (En) + Tda 0, (1) + YedeelU) + oI, glu)
Js 2l 3p p (8) = 2 Jee(8) + f/éJAlE(f) + Y y3r 1 (En) = Modr 1 (Em) + M pdaa (W) F Tedee(U) + dn ()
Ja “l3pp (8) — Jee(8) + fJAlE(g) Tode v (Em) + dr 1 (Em) + T 3a a (W) + Vedee(U) + Tpda £(U)
Js dapn () — edeel®) — 72%5(5) + Y3 p (1) = Tadeelt) = Tidn (1)

Js LI O+ Tdee(®) — =30 () + 3 p (0) — Ydeelt) — Ju £U)

3v2

TABLE 7: Uy and Jx Parameters for 2T ,—2T, Corner-Shared Dimer Expressed in Function of Transfer Parameter and Energies

Us 2 200§t9+ 2sirf 0 n 2cog o N 2sif o 23codf 23S|rfﬁ 2co€ o N 2sirf |
36(T)  36CT)  27¢,(A)  27e('A)  27¢(‘E) 2762(15) %,('T)  9('T))]
U, 2 2c0$9 | 2sif6 _ 16co$a _ 16sifa _ 5cofp _ Ssirff | 2co€o 2sirt o |
351(3T1) 352(3T1) 2751(1A1) 2752(1A1) 2761(1E) 2762( E) 961(1T2) 962(1T2)_
Us 2 7cod  7sifd | 2coda | 2sirfa 4c0§[3 45|rFﬂ 2co§6 2sirf o
351(31—1) 362(31—1) 2751(1A1) 2752(1A1) 2751( E) 2752( E) 951( T) 952(11—2)
Us [2c086 | 2sifo | 2coda | 2sifa | 4codp | 4sifp _ 7co$s _ 7sirf o |
36T 36T 276(A) 2762(1A1) 27¢,('E) 2762(1E) 9%,('T,) 962(1T2).
Us 2 codf  sird 2coda | 2sifa 4co§,8 4siff codd  sifo
126,°T)  12,(°T)  27¢,(*A) 2762(1A1) 2761(15) 27e,('E)  366,('T,)  36e,('T))
Us 2 2cog 0 " 2sirf 6 n 2cog o 4 2sirf o n 4co§ﬁ 4S|r12[3 200§<§ 2sirf o |
3¢,CT)  36,CT)  276(A)  276,('A)  27¢(E) 2752(1E) 961(1T2) 9¢,('T)]

J o co§ﬁ si’ g
&('E) 62(1*5)

) _z o[2coda | 2sifa co$p S|n2ﬁ]
a(A)  e(A)  «(E) &(F)
Js codd | sinfe
th[fl(STl) 62(3T1)]
Ja 212[ cod o sinf o ]
& Tz) 62(11—2)
Js f’co§9+3|r129_co§é_sinzé]
2 61(31—1) 62(31—1) 61(1T2) fz(sz)
Js 0

The problem of vibronic JahnTeller interactiof* seems to reduce some interionic interactions in clustemnd give rise
be inherent for the orbitally degenerate ions. This problem to the correlation between local distortions in crystals (orbital
deserves special consideration. The vibronic interaction canand structural ordering phenomeri&}’ Consideration of the
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Dy 134, 1PA1gBlg A1 By 1A E(Cﬁl-l) C}L_yg G(Vél:) Cr.y.'o’ = (_1)1/270’ Tllﬂ()z,_ﬂéi(Vé:) Tllﬂgz/’id =
— = —4 7 Iy 7 11 1”1 1”1 1
’ 1/2-o ki e o
v, R (-1 chﬁzgl,z,a, anriyiriyimxr‘;(ri,vsr) (Al.2)
DQZ\ 13A,, /// —//‘ IE 1B 1400 q Y
DaDs™ 135 1R, R 235§ and
138 & [ 27 3Eg3Eu
3By v/ 4 Ao _ 12-0 1270 & ¢, & T120 _
v 21 Cr,oGilu 8 Crppy = (1™ " T G(u §) Ty =
0
1/2— k ik &
o 205 | 21, (0" ZCl,g_omo. Z[ﬂ“y|rjyjrjyj[ZF?,(Fj,/,tSI') (AL3)
! =+ 200 G 7
! !
! \
b, A PN In egs Al.2 and AI.3_C_31§£ and My|TyyalzyzOare the
N \1\ v i Clebsch-Gordan coefficients for the rotation group and local
AN B, point group respectively. Since the operam{fs, andzﬁfj are
N ! 1By, o the irreducible double tensors, the Wigaéickart theorer¥?
A, can be applied to the calculation of the matrices of these
a b operators in the basis of the ground states of each ion. For
Figure 4. Energy pattern of the corner-shared bioctahe®a)) Cluster Instance,
consisting of one-electron ions: (a) spin-independent splitting, (b) spin- y e
dependent splitting. BT igMigrVigrd Xro (TS S L igMigey i 0=
~1/2 k o
magnetic vibronic problem in clusters and cooperative phe- [(2Sg + DTigd] ™ g igel X (TS| IS T
nomena in solids consisting of degenerate metal ions require Wigﬂ/igrmigr?’fgIVmssg,gn'/ghﬂ‘fkh (AL4)
the knowledge of the explicit form of the exchange Hamiltonian.
We hope that the results presented here may be helpful in thisyhere [3-+|I-+-Cis the reduced matrix element anlif) is the

area, and in future we give a comparison between the theoreticalgimension of the irreducible representatibg. Let us define
results and experimental edge-shared and corner-shared clustergne unit operatoi; acting in the spin space ofh ion in the

) ) usual manner as an irreducible tensor operator of the kank
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Appendix |. Evaluation of the Hamiltonian (284 + 1)_1/2[5@]'31'|Sgrmsjﬂ\'4'\2:g1'q (AL5)

In order to consider the symmetry properties of the one-site

operators entering in eq 4 we will define the “partial” projection where the reduced matrix element is given by the formula,

operators: /
[SlIS11Sg 3= [SelSqr + (25 + DI
G(S) = ;Ii, vSIMy I, vS'My | (Al1) Finally one can introduce the one-center orbital irreducible
v tensor operator@'ry acting in the orbital subspace so that their
Gj(ﬂ ) = ;“‘, u SCMP, u STMP | reduced matrix elements are
Y

Drigruoll“| lrigrDZ (Figr)l/2
These operators are evidently invariant under the transformations
of the point symmetry group of local surrounding of metal sites and hence
as well as under the rotations in spin space. Due to the scalar i
properties of the operators (eq Al.1) the symmetry (in both Tg7igr Ory MgV igl ™= WiV igr Tigrvig YH  (AlL6)
coordinate and spin spaces) properties of the one-site operators
It is now straightforward work to express the irreducible

+ AT A&y tensor operatorX‘? and Z!9, in terms of unit operators;,
Cryo GOSD) Cryr ANdCry, Gyl S ionic spin operatorél'q, and orbital irreducible tenso@, as
follows:
are determined only by the products of creation and annihilation
operators. Therefore these operators represent the double-tensor X?O(Fi,vél_") = ZaE(Fi,vél_")Oir I,
operators being transformed like the direct product 4 ‘ ’
IixI = 3T in the coordinate space ar? x D12 = Xi(T, v = ay(T, vSM)Oy., S
S k=01D® in the spin space. They are in general reducible and - o
can be represented in terms of irreducible tensors Z?(y’(l“j,ﬂSF) = ZbE(Fj,y SI“)O'Fylj

XK([y,vST) and ZK(T, « S) by means of the following . e
uniytary transformation: Z%‘;(I“j, w80 = by(T, u SOy, = (AL7)
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The coefficients a and b are proportional to the reduced matrix

elements of the operatok and Z;:

—_ 1 -
ay (M) = Z—ﬁ[(zagr + D[] 2 x
|:Sgrrigrl lX?‘(ri’VéI:)l ngr rigr[|
([, vS) = V2[S(Sgr + 1)(2Sg + ()]~ x
|:Sgrrigr] lel“(ri*Véf)l ngr I_‘igr[|
e 1 _
by (T, 1 §) = — Z—ﬁ[(zagr + 1)) 2 x
Bl g IZ?(F]-, n S Sor T

BT 1 ) = = V2IS(S + D@+ D) 2 x
SgjolIZH(T, 1 SDIISg Tig 1 (AL8)

Performing the summations ovkrandq in eqs Al.2 and Al.3

Borras-Almenar et al.

Similarly taking into account egs Al.3 and Al.7, one can
represent the matrix element of "d site operator
Cr,,,GWSCL,, with o = o' =1 as the following linear
combination ofb-parameters:

[Sgrr‘ingingigr|CI“yi Téi(;ug:)clfiyi’ﬂSgrringi'gryi'grDz
Z Dr‘y|riViri‘yi'm]rigryigrlrigryi'grry mbg(ri huéf) -

Y
b (48D) v/ S Sigr + DCs 3 4 Onay, (All-2)

Equations All.1 and All.2 express the matrix elements of
one-site operators in terms of the unknown parameigra,,
b;, andb, involved in the effective Hamiltonian (eq 5). In order
to evaluate these parameters, some of these matrix element:
have to be calculated directly, decomposing these matrix
elements into products of the matrix elements of the creation
and annihilation operators. This calculation can be essentially
simplified using the above mentioned symmetry properties of
the fermionic creation and annihilation operators. Since the

and taking into account egs Al.7 we can represent the different Creation operator represents the double irreducible tensor
one-site operators involved in the Hamiltonian (eq 4) in the Operator acting in both coordinate and spin subspaces, the

following form:
CEy, 1) éi(Véf ) Cr,y; W=
WEZ Ty Ty Tiy{@y(T,vSh)Or, S
Y

CEy, H0) éi(Vél: ) Cr,y; Ok
Z Oy [Ty, Ty, [al (T,vSDI, & ag (T, vST) §H
Y

e
Cryty Gilue S) Cr iy =
;«/EZ Oy [Ty, Ty W5(T, 1 S)O), SHF
Y

~ & + —
Cry, 1) GS) Cr gy =
> T |TyT{ Ok, [0y (T, 1 SO % ba(T, 1 DS
v
(AL9)

Now we are in the position to write the final expression for
the effective kinetic exchange Hamiltonian related to the syste
of orbitally degenerate transition metal ions. This Hamiltonian

is expressed in eq 5.

Appendix Il. Evaluation of the a- and b-Parameters in
the Effective Hamiltonian

Equation 6 contains as unknown parametayf, vSI),

by (I, uST), etc. Now we will describe the general way to
evaluate these parameters, this procedure will be exemplified
latter on. First, using egs Al.2 and Al.7 one can express the

matrix elements of one-site operato®y.,, G(vS[) Cr,,

related to the Hl ion in terms ofa-parameters. Providing
=¢ =1, we get

|:Sigrrigrl\/ligryigr|leiyi Téi(VSI:)CFiyi'HSgrringi'gryi'grDZ

Z DFV|riViriV;Wingigr|ringi'grrV l:[lag(ri !Véf) +
Y

3 ([,vST) 4/ S Sgr + DCSm O g, (A1)

Wigner—Eckart theorem can be applied to the calculation of
its matrix element. This allows to obtain the matrix element
linking the ground state of the ion with its oxidized and reduced
ionic states.

For the oxidized stat&' (di“_1 configuration), we have:

|:Sgrr‘igr'vli(:yryigr|Clj“L‘yio“a Vél:l\_/l')_/[h [(ZSgr + 1)(Figr)] e X

(ST T AWST T g g [ TYTi [T (AlL.3)

where Sy Tigl Ti AWSTis the reduced matrix element of the
operatorTy/>°.

For the reduced sta@" (di"_1 configuration) one can write
down:
uSMFICT, ST Mig i 0= [(25+ 1))

Tyyo

m§|lTll“{ZI|Sgrrigr[|]]’]:77|rigryi'grriyimzsjrl\/’;{;rllb (A”-4)

The corresponding matrices of the annihilation operator are
Hermitian conjugated to those given by egs All.3 and All.4.
Using eqgs All.3 and All.4 along with the definition of the

m partial projection operators (eqs Al.1), one can represent the

complex matrix elements (eqs All.1 and All.2) in terms of
reduced matrix elements of creation operator linking the ionic
ground state with the oxidized and reduced states. The results
are the following:

[SgrringigrYigAC;yioéi(VéI:)CF‘Mb' |$grringi'ngi'grD=
[(ZSgr + 1)(Figr)] _ll:ﬁgrrigr”-rll“:zl lvg‘ﬁzmigryigrﬁ?riyimx
Y

" T 4 r Migr r Migr
DringigJFVFiViD;Cgal,zg CluMs (AIL5)

|:Sgrrigr'\/ligryiv_;]r|Cl“‘yiuéi(/'t'g‘:‘)cli—iyi’ o’ngrringi'ngi'grDz
[(2§+ 1)@)] 71'—?']‘311' lTll"/l2I ngrFigrﬁzDﬁ]gj;lFigryigrri‘yi|:|><
Y

D?f/|rigr7igrrinD%C§zrmgr1/za Cszrl\'\//\l’grllb’ (AlL6)

Equations All.5 and All.6 make it possible to find all matrix
elements of one-site operators provided that we know the
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involved reduced matrix elements of the ferm?onic operators. 128 2\/6(23 +C)
The last can be found for each system using the explicit  tan(d) =~ 10Da+ 9B’ tan(2) =~ 50Da—2B_C
expressions (in terms of Slater determinants) for the wave q q
functions of ground, reduced, and oxidized ionic states. 4J/3B 4/3B

Setting the write sides of egs All.1 and All.2 to the tan(%)z—m, tan(%)zm
corresponding values of matrix elements obtained directly (eqs

AlL5 and All.6) we arrive at systems of linear algebraic e expressions of the wave functiofd& "My 0 e ML)

. . .y [‘ —~ e o
equations with respect to the quantities, (I',vSI), and |28 My in terms of Slater determinants are given in ref
b,(I,uSL), etc. Solving these systems of equations and 38 (pp 53 and 54).
substituting the results into the eqs 6 we can finally find the
parametersJrr(...) andJr(...) defining the effective Hamil-  Appendix V
tonian (eq 5) as the functions of relevant transfer parameters N £ A =
and the single-ion crystal field parameters. EParangersal,g(tz,lAl), a At A1), byifte, w S, and
bI J(tz, u SI) (these parameters appear for b@k, and D,
Appendix Il topologies):

. . L SC='A; (vacuum state)
MatricesOr, in the Hamiltonians of eqs 7 and 17:

Ay 1py_ 1 Ay 1p y_ 1
@) 1(6) 20 E(0) n(B) &(y) a(t Ay = Nl (A = 7
o) 7 v 1
-- 0 0
10 0 2 A =1, at,A) =2  (AV.1
OA1: 0 1 0 , OEu: O _1_ 0 1(2 1) «/é 2(2 l) \/6 ( )
0 0 1 2
0 0 1 =21
(Allt.1)
3 1
bit,, 13T,) = ——cos 0, bot, 1°T,)=— —cos 6
?x) "B &) ) 1) L 1t 1) =2 2t 1) == 2
3 4+ =
5 00 0 Nl bE(, 15T,) = — ——co2 0, bi(t, 1°T,) =-—cod 0
Og, = 0 @0 , Op,= :Fio o | 2.6 V6
2 2 ) 3 . 1
o o 0 0 V2 0 0 bty 2.°T)) = %smz 0, byty 2°T)=— 73sm2 9
o
() ) ) b, 2°T)) = — ——sir? 6, bE(t, 2°T,) = —sir? 0
0 i 0 1\*2r & 2\/6 ’ o\l &5 11 \/6
V2 (AV.2)
O,.=|1 (Alll.2) .
TL NG 0 0 & =14,
0 0 0 1 1
where &, 5, and ¢ stand for the basis ;Tand o, 8, and y bRty 1'A) = ——=cod a, bbi(t, 1'A)=—=coda
enumerate the basis ofi(Ly, Ly, L), the signst relate to the 6\/§ 3“/5’
basis B(Ty).
Y bi(t, 1,'A) = 3—}/6005 o, b5t 1'A) = 3—36005 a
Appendix IV
. e . 1 . 1 .
The wave functions for the repeati®l’ terms of d-ion: b/fl(tzy 2,1A1) =—sirfa, bé\l(tz, 2,1A1) =—sirfa
6v3 3V3
11T, c0s0I T sin flte T, b(t,, 2'A) = L sita, bEt, 23A,) =—2sifa
12,37, 0= sin 0]t2 3T, 0+ cos0|t,eT,0 o 3V6 R N2 (AV.3)
11,'A, = cosat3,'A, - sinae?,'A, 0 & =1
12,'A, = sinat;,'A, [+ cosa|e?,'A, 0 A ) 1 A . 5
) )t o bi(t,, 1,'E) = —=co< B, bh(t, 1,'E) = —=cos
|1,"E00= cosp|ts, ELF sin Ble”, ED 3v3 33
. 2 E 1 4
2 'EC= sinB|3,'"ECH cosple’,'ED b(t, 1,'E) = —==co$ B, b5(t, 1,'E)=—=co$p
| ﬁ' 2 ﬁl 1\'2 3«/6 2\*2 3«/6
1 2 1 - 1
|1,°T,O0= cosdlt;, T,0— sind|te, T,0 ” e 1 2 AL e 2 2
1t 27E)= sin” B, byt 2,E)= sin” 3
12.1T,0= sin 0|2 1T, [+ cosd|t,e T,0 3v3 3v3
. 2lE)= 2 g B 2lEy= 4 g
where o, 8, and 6 and & can be obtained from the next bi(t,, 2, E)—S\/ésmzﬂ, by (t, 2, E)_3«/f_55m25

expressions: (AV.4)
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S = 1T2
(L, 1T,) = —~—cod o,
2/3

bE(t, 11T,) = — ——cod s,

2V6

1 .
b}t 2, 1T,) = ——=sin? o,
V2T =00

bE(t, 21T,) = — ——sir? s,

2V6

B, 1T,) = = cog 6

V3
bS(t, 11T,) = — %0052 5
1
bhY(t,, 2,1T,) = —sir’ 0
V3
bS(t, 21T,) = — %sinz 5

(AV.5)

Paramg}ersa}}z(tz,lAl), a2 A1), bit, u S, and
by%(tz, 4 ST) appearing only foiDay topology:

SI' = 1A; (vacuum state)

aIl(tz,lAl) = %’

1
A, A = 1

S":3T1

ay(t,'A) =1

ay'(t,'A) =1

(AV.6)

Tty 1°T) = Sc0g 6, bi(t, 1°T) = — Y008

bty 1°T,) = — Scog 6,
b1ty 2°T,) = Ssitf 6, bt 2°T)) =

bty 2°T;) = — Ssirf 6,

g:lAl

b(t,, 1,'A;) = Y40 a,
biA(t,, 1,'A,) = Y/scos a,
bii(t,, 2,'A,) = Ysirf a,
b(t,, 2,'A,) = Ysirt a,

S =1
b(t, 1,'E) = — Y/,co€ B,
bi*(t,, 1,)E) = — Y/scos B,

bii(t,, 2,'E) = — sirf ,
biA(t,, 2,'E) = — Ysir? ,

by(t,, 1,°T,) = /,cos 6

— st @

by(t,, 2,2T,) = *,sirf 6
(AV.7)

by (t,, 1,'A;) = Y/,c08 o
by(t,, 1,'A;) = Y/,c08 a
by(t,, 2,'A,) = Y sin’ a
by2(t,, 2,'A,) = sin’ a

(AV.8)
bii(t,, 1,'E) = — Y/,co8
by2(t,, 1,'E) = — Y,c08 B
byi(t,, 2,)E) = — Y,sirf 8
by(t,, 2, 'E) = — Ysin’ B

(AV.9)

Borras-Almenar et al.

§=1T2

bii(t, 1.T,) = — ,co¢ 5, biXt, 1'T,) = — ,cod o

biA(t,, 1,'T,) = ,co€ 8, bjA(t,, 1,'T,) = /,cos o

bii(t,, 2.1T,) = — Y,sinf 0, bty 2 T,) = — Y,sin’ o

biA(t,, 2,'T,) = ,sinf o, bty 2,'T,) = Y,sin’ o

(AV.10)
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